Уолтер Левин - Глазами физика. От края радуги к границе времени
В гибридных автомобилях этот процесс частично происходит в обратном порядке. Часть кинетической энергии автомобиля, генерируемой при нажатии на тормоз, преобразуется в электрическую, которая сохраняется в аккумуляторе и запускает электродвигатель. А в нефтяной печи химическая энергия нефти превращается в тепло, повышая температуру воды в системе отопления, которую насос затем прокачивает через радиаторы. В неоновых лампах кинетическая энергия электрических зарядов, движущихся через неоновую газовую трубку, преобразуется в видимый свет.
Этот список, судя по всему, не имеет конца. В ядерных реакторах ядерная энергия, хранящаяся в ядре урана или плутония, преобразуется в тепло; оно превращает воду в пар, вращающий турбины, которые генерируют электричество. Химическая энергия, хранящаяся в ископаемом топливе – не только в нефти и бензине, но также в угле и природном газе, – преобразуется в тепло и, если говорить об электростанции, в конечном счете в электроэнергию.
Вы можете без труда стать свидетелем чудес трансформации энергии, соорудив электрическую батарейку, которых существует огромное множество – от тех, что установлены в традиционном или гибридном автомобиле, до тех, от которых питаются беспроводная мышь компьютера и мобильный телефон. Хотите верьте, хотите нет, но батарейку можно сделать из картофелины, монетки, оцинкованного гвоздя и двух кусочков медной проволоки (каждая длиной сантиметров пятнадцать; с каждого конца надо соскрести сантиметра полтора изоляции). Воткните гвоздь с одной стороны картофелины почти до конца, сделайте прорезь с другого конца и вставьте в нее монетку. Приложите конец одного куска проволоки к гвоздю (или оберните вокруг его шляпки), а другой кусок проволоки – к монетке, или вставьте его в щель так, чтобы он прикасался к монетке. Теперь прикоснитесь свободными концами проводов к выводам лампочки для новогодней гирлянды. Она должна засветиться. Мои поздравления! На YouTube можно найти демонстрации десятков таких хитроумных приспособлений.
Ясно, что процесс преобразования энергии происходит вокруг нас повсеместно, но в одних случаях он очевиден, а в других нет. Более всего противоречит здравому смыслу то, что мы называем гравитационной потенциальной энергией. Мы обычно не думаем о статических объектах как об имеющих энергию, однако она у них есть, причем порой совсем немалая. Поскольку сила тяжести всегда пытается притянуть объекты к центру Земли, каждый предмет, падающий с некоторой высоты, будет набирать скорость. При этом он теряет гравитационную потенциальную энергию, но приобретает кинетическую – как вы помните, энергия никогда не теряется и не возникает из ничего; это игра с нулевым результатом! Если предмет массой m падает вертикально вниз с высоты h, его потенциальная энергия уменьшается на величину mgh (g – ускорение свободного падения, которое составляет около 9,8 метра в секунду за секунду), а кинетическая возрастает на ту же величину. А если перемещать предмет вверх по вертикали на расстояние h, его гравитационная потенциальная энергия увеличится на величину mgh, и эту энергию должны будете произвести вы (то есть должны будете выполнить эту работу).
Если книга массой один килограмм, стоящая на полке в двух метрах над уровнем пола, падает на пол, ее гравитационная потенциальная энергия уменьшится на 1 × 9,8 × 2 = 19,6 джоуля, а кинетическая энергия в момент падения книги на пол будет 19,6 джоуля.
Я считаю, что гравитационная потенциальная энергия – отличное название. Подумайте об этом с такой точки зрения. Если я подниму книгу с пола и поставлю ее обратно на полку, мне для этого потребуется затратить 19,6 джоуля своей энергии. Теряется ли она бесследно? Нет! Теперь, когда книга опять в двух метрах над уровнем пола, она имеет «потенциал» возвращения этой энергии мне в виде кинетической энергии всякий раз, когда я опять уроню книгу на пол, будь то на следующий день или в следующем году! Чем выше над полом находится книга, тем больше энергии «потенциально» доступно, но, конечно, чтобы поставить книгу выше, мне придется выдать дополнительную энергию на ее подъем.
Подобным образом, чтобы пустить стрелу, мне потребуется натянуть тетиву лука. Эта энергия хранится в луке и «потенциально» доступна в тот момент, когда мы решаем преобразовать потенциальную энергию в кинетическую, которая придает стреле скорость.
А теперь с помощью простого уравнения я вам покажу кое-что совершенно замечательное. Если вы не против несложных математических упражнений, это позволит вам понять, как и почему работает самый известный (не)эксперимент Галилея. Напомним, что ученый якобы бросал шары разной массы (и, следовательно, разного веса) с Пизанской башни, чтобы показать, что скорость их падения не зависит от массы. Как следует из законов движения Ньютона, кинетическая энергия движущегося объекта пропорциональна массе объекта и квадрату его скорости, что в виде уравнения выглядит так: Eкин=½mv². А поскольку мы знаем, что гравитационная потенциальная энергия объекта преобразуется в кинетическую, то можем сказать, что mgh равно ½mv², следовательно, уравнение – mgh = mv². Если разделить обе стороны на m, то m исчезает из уравнения полностью и у нас остается gh = v². Чтобы избавиться от дроби, умножаем обе части уравнения на 2 и получаем 2gh = v². Это означает, что v, скорость, – именно то, что тестировал Галилей, – равняется квадратному корню из 2gh[20]. И обратите внимание, что масса из уравнения исчезла! Стало быть, скорость действительно не зависит от массы. Приведу практический пример. Если мы уроним камень (любой массы) с высоты 100 метров, то при отсутствии аэродинамического сопротивления он врежется в землю со скоростью около 45 метров в секунду, или около 160 километров в час.
Представьте себе камень (любой массы), падающий на Землю с высоты нескольких сотен тысяч километров. С какой скоростью он войдет в атмосферу Земли? К сожалению, мы не можем в данном случае использовать простое уравнение, приведенное выше, согласно которому скорость равна квадратному корню из 2gh, потому что ускорение земного притяжения сильно зависит от расстояния до Земли. На расстоянии, как до Луны (около 386 тысяч километров) это ускорение примерно в 3600 раз меньше, чем у поверхности Земли. Чтобы избежать излишне сложных расчетов, поверьте мне на слово: интересующая нас скорость составит более 40 тысяч километров в час!
Думаю, теперь вы наверняка поняли, насколько важна гравитационная потенциальная энергия в астрономии. Как мы будем обсуждать в главе 13, когда материя падает с большого расстояния на нейтронную звезду, она обрушивается на нее со скоростью примерно 160 тысяч километров в секунду, да-да, в секунду! Иными словами, при массе камня всего один килограмм его кинетическая энергия составляла бы около 13 тысяч триллионов (13 × 1015) джоулей, что примерно равно количеству энергии, вырабатываемой крупной (1000 МВт) электростанцией за полгода.
Способность разных видов энергии снова и снова преобразовываться друг в друга, безусловно, замечательна сама по себе, но еще более удивителен факт отсутствия чистых потерь энергии. Их не бывает вообще. Потрясающе! А ведь именно поэтому мой строительный таран до сих пор меня не угробил.
Подтягивая 15-килограммовый шар к подбородку по вертикали на расстояние h, я увеличиваю его гравитационную потенциальную энергию на mgh. После того как я отпускаю его, под действием силы тяжести он начинает раскачиваться через весь зал, и mgh преобразуется в кинетическую энергию. В данном случае h – это расстояние по вертикали между моим подбородком и самым низким положением груза на конце веревки. Когда шар достигает низшей точки колебания, его кинетическая энергия составляет mgh. По мере того как он завершает дугу и достигает верхнего предела колебания, кинетическая энергия снова преобразуется в потенциальную – поэтому в самой высокой точке колебания шар на мгновение останавливается. Нет кинетической энергии – нет движения. Но это длится всего долю секунды, потому что шар начинает опять двигаться вниз, совершая очередное колебание, и потенциальная энергия снова преобразуется в кинетическую. Сумма кинетической и потенциальной энергии называется механической энергией, и при отсутствии трения (в нашем случае сопротивления воздуха) суммарная механическая энергия не меняется – она сохраняется.
Это означает, что шар никогда не долетит до точки, хоть немного выше той, в которой его отпустили, если только в каком-то месте его пути ему не будет придана дополнительная энергия. Таким образом, аэродинамическое сопротивление – моя надежнейшая подушка безопасности. Им отбирается очень небольшое количество механической энергии маятника и преобразуется в тепло. В результате груз останавливается в считаных миллиметрах от моего подбородка, как вы можете увидеть на видео лекции № 11 из курса 8.01. Сьюзен смотрела эту демонстрацию трижды, и каждый раз вздрагивала. Меня постоянно спрашивают, много ли я тренировался, чтобы показывать такой опасный фокус, и я всегда отвечаю чистую правду: мне не нужны тренировки, потому что я на сто процентов доверяю закону сохранения энергии. Но если бы я хоть немного толкнул шар, отпуская его – скажем, случайно кашлянул именно в этот момент, – он качнулся бы назад до места чуть выше, чем то, в котором я его отпустил, и разбил бы мне подбородок.