Антон Первушин - Марсианин: как выжить на Красной планете
Понятно, что эксперименты с растениями будут продолжены в дальнейшем, причем в двух направлениях: совершенствование конструкции оранжерей и селекция новых сортов растений, лучше приспособленных к условиям космического корабля. Пока же данные, которые удалось накопить ученым, заставляют сделать малоутешительные выводы. Хотя высшие растения удалось заставить жить и размножаться в условиях космического полета, они не дают каких-то особенных всходов и обильных урожаев. Исследования также показали, что в третьем поколении резко падает продуктивность орбитальных оранжерей – это обусловлено снижением в корневом модуле питательных веществ и накоплением продуктов метаболизма. Следовательно, модули придется регулярно заменять новыми. А как это сделать в условиях продолжительного космического полета? Брать с собой запас? Такой вариант возможен, однако он натыкается на серьезное препятствие: согласно расчетам, космическая оранжерея способна регенерировать всего лишь до 5 % кислорода, до 3,6 % воды и около 1 % основных элементов питания в общем балансе экспедиции. При этом она нуждается в непрерывном контроле и тщательном уходе. Позитивный эффект от присутствия растений на борту межпланетного корабля только один – психологический: космонавтам нравится работать с оранжереей и пользоваться результатами своего труда.
Еще бо́льшие проблемы возникли при первых опытах с птицами, которых предполагалось взять в полет с целью пополнения рациона космонавтов свежим мясом. Для экспериментов были выбраны японские перепела. Они мельче кур (взрослая особь весит около ста граммов), причем их масса, приходящаяся на единицу корма, значительно выше, чем у курицы. Перепелиные яйца тоже невелики, но вкусны, по питательной ценности не уступают куриным и очень полезны: в них содержится лизоцим – вещество, укрепляющее иммунную систему. Кроме того, перепел не болеет (температура тела птицы около +41 °C, а сальмонелла гибнет при температуре +38 °C). Очень важно и то, что японским перепелам не требуется много времени для развития: птенец появляется на свет на 17–21-е сутки после закладки яйца в инкубатор. Перепела начинают нестись гораздо раньше кур, в возрасте 35–40 суток, и некоторые особи дают по два яйца в сутки.
Впервые перепелиные яйца попали на орбиту в 1979 году на борту биоспутника «Космос-1129» в установке «Инкубатор-1». Ученые хотели установить, смогут ли в условиях невесомости развиваться эмбрионы птенцов. Выяснилось, что развитие эмбрионов шло не хуже, чем на Земле. Опыт учли при создании новой установки «Инкубатор-2» для экспериментов на станции «Мир». Первым живым существом, родившимся в космосе, стал перепеленок, пробивший скорлупу 22 марта 1990 года. За ним появился второй, третий. Однако перепелята не смогли адаптироваться к условиям невесомости. Они хаотично летали внутри отсека. Из-за невозможности фиксировать тело в пространстве птенцы не смогли самостоятельно кормиться и вскоре погибли.
В 1992 году на орбиту было отправлено 40 яиц и специальные мешки-фиксаторы для имитации гравитационного воздействия. Тогда вывелось шесть птенцов, которые затем были доставлены на Землю, став ценным научным материалом для биологов. В 1999 году на «Мире» продолжили эксперимент, который получил название «Перепел СК-6». На этот раз планировалось изучить поведение птенцов в первые сутки жизни в условиях искусственной «гравитации», для чего использовалась специальная центрифуга, дававшая нагрузку от 0,3 до 0,8 g. Однако центрифуга сломалась, проработав всего 15 часов. По просьбе ученых десять птенцов разместили в спускаемом аппарате и отправили на Землю. Из них выжили только трое.
Таким образом, результат этих экспериментов неоднозначен. Зародыши внутри яиц развиваются нормально, однако птенцы не могут приспособиться к невесомости и погибают без специальных фиксаторов. Очевидно, и здесь требуются продолжительные исследования, которые позволят сделать окончательные выводы о приспособляемости птиц к условиям космического полета.
Наверное, многие проблемы можно было бы решить, создав на корабле искусственную «гравитацию». Теоретики космонавтики считают, что нет никаких противопоказаний для замены силы тяжести центробежной силой. Подсчитано, что оптимальной скоростью вращения должна быть скорость 10 град/с с радиусом вращения 90 м – в этом случае искусственная сила тяжести приобретет величину, равную 0,25–0,35 g, чего вполне достаточно для устранения вредоносного воздействия невесомости на экипаж и биосферу корабля. Однако те, кто видит «панацею» в раскрутке корабля, обычно забывают о силе Кориолиса, которая проявляет себя именно в раскрученных системах. А ее проявления весьма неприятны: брошенный предмет относит в бок, вытянутая рука сама отклоняется в сторону. Что если адаптация к такой среде окажется еще труднее, чем адаптация к невесомости? Может ли система искусственной «гравитации» гарантировать, что космонавты в таких условиях будут точно и быстро выполнять все необходимые операции? Следовательно, раньше или позже придется провести соответствующий эксперимент.
Имеются и другие опасные космические факторы, влияние которых на человека, животных и растения изучены крайне слабо. На Земле и низких околоземных орбитах мы защищены от воздействия космических частиц незримым толстым «щитом» магнитных полей, задерживающих их в радиационных поясах. В межпланетном пространстве от потока частиц космонавта защищает только тонкая стенка корабля.
Чтобы разобраться, какие дозы радиации опасны, воспользуемся устаревшей, но весьма наглядной единицей измерения – биологическим эквивалентом рентгена (бэр). Один бэр соответствует такому облучению живого организма, при котором наблюдается тот же биологический эффект, что и при получении дозы гамма-излучения в один рентген. Для работников атомных электростанций, которые постоянно работают с источниками ионизирующих излучений, медицинскими нормативами установлен предел в 30 бэр в год, что на два порядка выше естественного фона у поверхности Земли. Для советских космонавтов был установлен норматив 150 бэр в год, причем однократная доза «оправданного риска», которую космонавт мог получить, например, при выходе в открытый космос в условиях солнечной вспышки, не должна превышать 50 бэр (к развитию лучевой болезни гарантировано приводит однократная доза в 100 бэр). Сегодня установлены более жесткие нормативы: для российских космонавтов – 66 бэр в год, для американских астронавтов – 50 бэр в год. В реальности космонавты, работающие на Международной космической станции, «набирают» от 0,1 до 0,8 бэр в сутки, что с учетом неравномерности получаемых доз считается приемлемым. Во время рекордной по интенсивности вспышки на Солнце, которая произошла 20 января 2005 года, экипаж МКС «поймал» по 1 бэр, что примерно соответствует облучению во время посещения рентгеновского кабинета.
Но это на орбитальной станции, которая имеет неплохую защиту и прикрыта магнитным полем Земли. Что будет с дозой и космонавтами в дальнем космосе, если произойдет сравнимая по мощности вспышка? Точно не может сказать никто. Считается, что если бы в момент этой вспышки космонавт находился на Луне, то он получил бы довольно серьезную дозу: 35 бэр внутри корабля и 400 бэр в скафандре на поверхности – последняя названная доза почти неизбежно привела бы к лучевой болезни со смертельным исходом. Но даже без вспышек экипаж межпланетного корабля будет подвергаться воздействию солнечных и галактических лучей. Исследования, проведенные аппаратом «Марс Одиссей», показали, что на орбите Марса суммарное излучение примерно в два с лишним раза больше, чем на орбите МКС, и составляет 0,22 бэр в сутки. А поскольку Марс имеет очень слабое магнитное поле (примерно в 800 раз слабее земного), то примерно такую же дозу космонавты будут получать, высадившись на поверхность. Элементарный расчет показывает, что если экспедиция продлится два года, то ее участники наберут 160 бэр, что находится за пределами современных нормативов.
Причем следует помнить, что радиация оказывает вредоносное воздействие не только на людей, но и на животных, и на растения. Скажем, биологи установили, что наиболее подходящими растениями для космической оранжереи являются картофель, фасоль, свекла и салат – но эти же растения оказались наименее устойчивы к ионизирующей радиации.
Еще меньше, чем о воздействии радиации, известно о том, как повлияет на наши организмы длительное нахождение вне геомагнитного поля (гипомагнитная среда). На Земле все организмы находятся в магнитном поле – мы появились и эволюционировали в нем. Наши жизненные ритмы напрямую связаны с его естественными колебаниями и наложенными на них переменными магнитными полями, обусловленными изменениями в ионосфере и магнитосфере. Величина магнитного поля в межпланетном пространстве и на Марсе будет соответственно в 10–4 и 10–3 раз меньше, чем на Земле. Уже имеются данные о неблагоприятном влиянии пониженного магнитного поля на жизнедеятельность человека: в частности, выявлены неблагоприятные функциональные сдвиги в нервной, сердечно-сосудистой и иммунной системах. Придется спроектировать, построить и испытать некую систему, которая создавала бы на межпланетном корабле магнитное поле, близкое по напряженности полю Земли, одновременно защищая экипаж от космического излучения. Однако эта задача с точки зрения технического воплощения будет посложнее искусственной «гравитации». Расчеты показывают, что для эффективной электромагнитной защиты корабля объемом 100 м3 понадобится соленоид диаметром 4 м и длиной 2 м, причем его потребляемая мощность составит 2000 мегаватт! Где взять такую бездну энергии? Похоже, все-таки придется обойтись классической защитой – толстыми стенками корабля, которые хоть и утяжелят его, но не будут требовать огромной энергии. Что касается биологической «зависимости» от магнитного поля, то этот вопрос еще требует изучения – на Земле и в космосе.