KnigaRead.com/

Айзек Азимов - Вид с высоты

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Айзек Азимов, "Вид с высоты" бесплатно, без регистрации.
Перейти на страницу:

И вот тут-то астрономы оказались в затруднении. Никакого общего решения этой задачи нет, поэтому нет смысла в переходе к «задаче триллионов тел», существующих во Вселенной.

К счастью, это не остановило астрономов. Хотя в теории и есть изъян, ее все-таки можно использовать. Представьте, например, что ученым понадобилось бы рассчитать орбиту, по которой Земля обращается вокруг Солнца, чтобы затем вычислить положение этих тел по отношению друг к другу на следующий миллион лет. Если бы Солнце и Земля были единственными телами во Вселенной, то решить такую задачу было бы пустяковым делом. Но тут надо учитывать и притяжение Луны, Марса и других планет и — для полной точности — даже звезд.

К счастью, Солнце настолько больше любого другого небесного тела в солнечной системе и настолько ближе к Земле, чем любое другое тело с большой массой, что его тяготение «глушит» все остальные. Если при расчете орбиты Земли в качестве исходных данных брать только эти два тела, то ответ получается почти правильный. Кроме того, учитывается довольно слабое влияние ближайших тел и вносятся соответствующие поправки. Но чем точнее мы хотим рассчитать орбиту Земли, тем больше поправок нужно внести, чтобы учесть все более и более мелкие возмущения.

Принцип ясен, но на практике такие расчеты, разумеется, могут стать громоздкими и весьма утомительными. Формула, по которой более или менее точно рассчитывается движение Луны, занимает многие сотни страниц. Но она вполне пригодна для предсказаний времени и мест затмений с большой точностью и на большие сроки вперед.

Тем не менее астрономы не удовлетворены. Очень хорошо рассчитывать орбиты на основе последовательных приближений, но как прекрасно и изящно выглядела бы формула, которая позволила бы простым и общим путем связать влияние всех или по крайней мере трех тел.

Ближе всех подошел к этому идеалу французский астроном Жозеф Луи Лагранж. В 1772 году он действительно нашел некоторые весьма частные случаи, когда «задача трех тел» могла быть решена.

Представьте себе в пространстве два тела. Если масса тела А в 25,8 раза больше массы тела В, то об этом теле В можно сказать, что оно обращается вокруг в сущности неподвижного A. Так, например, Юпитер обращается вокруг Солнца. Затем представьте себе третье тело, С, имеющее сравнительно незначительную массу и не нарушающее гравитационных взаимоотношений А и В. Лагранж нашел, что тело С можно так разместить по отношению к телам А и В, что С будет обращаться вокруг A, точно сообразуясь с движением В. Таким образом, положение всех трех тел по отношению друг к другу будет известно во все времена.

Имеется 5 точек, в которые можно поместить тело С; они названы точками Лагранжа[17]. Три из них, Л1, Л2 и Л3, находятся на прямой, соединяющей A и В. В точке Л1 тело С оказывается между A и B. В точке Л2 — на той же прямой, но по одну сторону от A и B, а в точке Л3 — по другую.

Значение этих трех точек Лагранжа невелико. Любое тело, помещенное в одну из них, когда-нибудь хоть немного сдвинется из-за возмущения некоего тела, находящегося вне системы, и в результате воздействия притяжения A и B на тело C оно должно отойти от точки Лагранжа еще дальше. Это похоже на длинную палку, которую поставили на острие. Достаточно ей хотя бы немного наклониться, как она будет наклоняться все больше и больше, пока не упадет.

Две другие точки Лагранжа находятся не на прямой, соединяющей точки A и B. Если соединить их линиями с точками A и B, образуются равносторонние треугольники. Когда В обращается вокруг A, то точка Л4 всегда находится на 60 градусов спереди, а Л5 — на 60 градусов сзади.

Это две точки устойчивого равновесия. Если тело в любой из этих точек немного изменит положение из-за возмущений, то под воздействием притяжения A и B оно вернется обратно. Таким образом, тела в точках Л4 и Л5 колеблются вблизи истинной точки Лагранжа, подобно тому как колеблется палка, когда ее пытаются удержать в равновесии на пальце, постоянно меняя его положение.

Конечно, если палка отклонится от вертикального положения слишком сильно, то, несмотря на старания сохранить ее равновесие, она все же упадет. Так и небесное тело: если оно отклонится от точки Лагранжа слишком далеко, то может навсегда уйти из системы.


* * *

В то время, когда Лагранж решил «задачу трех тел», еще не было известно ни одного объекта во Вселенной, расположенного в предполагаемых им точках. Однако в 1906 году немецкий астроном Макс Вольф обнаружил астероид, который он назвал Ахиллом, по имени греческого героя из «Илиады». Для астероида он находился необычайно далеко. В сущности, этот астероид двигался так же далеко от Солнца, как Юпитер.

Анализ его орбиты показал, что он всегда остается возле точки Лагранжа Л4 в системе Солнце — Юпитер. Таким образом, он почти все время на 780 миллионов километров опережает Юпитер в его движении вокруг Солнца.

Несколько лет спустя в точке Л5 системы Солнце — Юпитер был обнаружен другой астероид. В честь любимого друга Ахилла он был назван Патроклом. Движется этот астероид вокруг Солнца, постоянно отставая от Юпитера на 780 миллионов километров.

Со временем в обеих точках были обнаружены и другие астероиды. Сейчас их известно уже 15: 10 — в Л4 и 5 — в Л5. Раз уж первый астероид был назван Ахиллом, то и все остальные получили имена героев «Илиады». И поскольку в «Илиаде» речь идет о Троянской войне, то все тела в обоих положениях были названы общим именем — «троянцы». Так как в число астероидов в положении Л4 входит один, названный по имени вождя греков (Агамемнон), то их иногда выделяют как «греческую группу». Среди астероидов в положении Л5 есть один, названный в честь троянского царя Приама, и о всех этих астероидах часто говорят как о «чисто троянской» группе.

Было бы неплохо, если бы в «греческую» группу входили только «греки», а в «чисто троянскую» — только «троянцы». К сожалению, об этом не подумали, и получилось так, что троянский герой Гектор входит в «греческую» группу, а греческий герой Патрокл — в «троянскую». От такой неразберихи любого знатока классической литературы хватил бы удар. Даже у меня появляется определенное чувство неловкости, хотя я не такой уж строгий ревнитель классики.

«Троянцы» остаются единственным примером тел, находящихся в точках Лагранжа. Они так хорошо известны, что точки Л4 и Л5 обычно называют троянскими положениями.

Внешние возмущения (особенно притяжение Сатурна) заставляют астероиды держаться возле этих точек. Иногда они разбредаются, какой-нибудь астероид может отойти от точки Лагранжа на расстояние до 150 миллионов километров. В конце концов такой астероид может быть оттянут далеко в сторону и начать движение по «нетроянской» орбите. С другой стороны, какой-нибудь астероид, ранее независимый, в результате возмущения может оказаться поблизости от точек Лагранжа и попасть в ловушку. В конце концов вместо одних «троянцев» появятся другие, но некоторое число их будет всегда.

«Троянцев», несомненно, не 15, а гораздо больше. Но они находятся так далеко от нас, что видны только довольно большие астероиды, имеющие до 100 километров в диаметре. И все же, безусловно, есть десятки и даже сотни более мелких, невидимых обломков, которые мчатся за Юпитером или прочь от него, но в этой извечной гонке нет победителей.


* * *

Троянских положений во Вселенной должно быть много. Если бы отношение масс каждой пары взаимосвязанных тел было 25,8 : 1, то я не удивился бы, узнав, что в троянских положениях их сопровождают какие-то каменные обломки.

Однако знать, что эти обломки существуют, — это еще не значит их увидеть; разумеется, обнаружить их где бы то ни было за пределами солнечной системы нельзя. Конечно, можно найти три взаимосвязанные звезды, но для подлинно «троянской обстановки» одно из тел должно иметь незначительную массу, и мы не сможем его увидеть при помощи астрономических инструментов, имеющихся сейчас в нашем распоряжении.

В солнечной системе Солнце и Юпитер — самая большая пара тел. Другие тела, попавшиеся в ловушку в точках Лагранжа этой системы, сами по себе могут быть довольно большими, но массы их по сравнению с массой Юпитера совершенно ничтожны.

С Сатурном дело обстоит далеко не так благоприятно. Так как Сатурн меньше Юпитера, астероиды в троянском положении, связанном с Сатурном, были бы в среднем меньше. Они были бы вдвое дальше от нас, чем астероиды Юпитера, и поэтому казались бы более тусклыми.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*