KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Рудольф Киппенхан - Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд

Рудольф Киппенхан - Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Рудольф Киппенхан, "Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд" бесплатно, без регистрации.
Перейти на страницу:

Как возникают импульсы?

Итак, у нас есть правдоподобное объяснение того, как возникает рентгеновское излучение. Но мы еще не выяснили, почему оно пульсирует.

В случае пульсаров мы считаем, что пульсации обусловлены вращением нейтронной звезды. Подобно большинству небесных тел, наши компактные объекты обладают, скорее всего, магнитным полем, и, как и у Земли, магнитная ось может не совпадать с осью вращения. Движение космического вещества поперек силовых линий затруднено, поэтому на компактный объект вещество будет падать преимущественно в области его магнитных полюсов (рис. 10.11). Рентгеновское же излучение возникает там, куда падает вещество, т. е. вблизи полюсов. А распространяться оно будет в стороны, поскольку в направлении магнитной оси его поглощает падающее вещество. Если компактный объект вращается, то для удаленного наблюдателя рентгеновское излучение будет пропадать всякий раз, когда к нему обращен тот или другой магнитный полюс. В остальное время рентгеновское излучение появляется вновь (рис. 10.11).

Рис. 10.11. Происхождение рентгеновских вспышек. Когда вещество падает на компактный объект, возникает рентгеновское излучение (вверху). Если звезда обладает магнитным полем, подобным по конфигурации земному, то вещество падает на звезду (черный кружок) в основном в области полюсов. Потоки падающего на полюса вещества образуют непроницаемые для рентгеновского излучения «пробки», и излучение уходит от звезды лишь вбок от полюсов (красные волнистые стрелки). Если весь объект вращается, то может оказаться, что удаленный наблюдатель за каждый оборот объекта принимает два коротких импульса рентгеновского излучения (вторая и четвертая фазы в нижней части рисунка). Для простоты ось вращения показана перпендикулярной к магнитной оси.

Изменение магнитного поля нейтронной звезды

Еще говоря о пульсарах, мы пришли к выводу, что за их радиоимпульсы ответственно магнитное поле. Теперь же нам приходится привлечь магнитное поле для объяснения рентгеновских звезд. Откуда же появляется у нейтронной звезды магнитное поле?

Магнитные поля во Вселенной встречаются почти повсеместно. Солнце в целом обладает магнитным полем, подобным земному, но вдвое более сильным. В области солнечных пятен магнитные поля в тысячу раз сильнее земного. У других звезд также можно обнаружить магнитные поля. Мы можем с полной уверенностью утверждать, что многие звезды обладают магнитным полем.

Магнитные поля и космическое вещество взаимосвязаны. Когда тело уплотняется, усиливается и его магнитное поле. И когда из части звезды образуется белый карлик, из-за высокого сжатия изначально слабое магнитное поле усиливается в десятки тысяч раз. Так можно объяснить мощные магнитные поля белых карликов. Но когда звездное вещество достигает плотности нейтронной звезды, магнитное поле может стать в сто миллиардов раз сильнее — настолько велико здесь сжатие. Вот почему у нейтронных звезд следует ожидать наличия чрезвычайно сильных магнитных полей. И такие поля были обнаружены!

2 мая 1976 года над городом Палестайн в США поднялся аэростат с научными измерительными приборами, разработанными учеными из Института космической физики имени Макса Планка в Гархинге близ Мюнхена и из Тюбингенского университета.

Группа, руководимая Иоахимом Трюмпером, имела уже некоторый опыт в рентгеновских исследованиях, и среди прочих задач в программу входила проверка нового рентгеновского детектора. Новый приемник работал в области более высоких энергий рентгеновского излучения, чем детекторы, установленные на спутнике «Ухуру». Как и в случае света, у рентгеновского излучения энергия кванта тем выше, чем короче длина волны; энергию рентгеновских фотонов измеряют обычно в килоэлектронвольтах (кэВ). Рентгеновские приемники на спутнике «Ухуру» работали в области от 2 до 10 кэВ, а новый приемник был предназначен для регистрации квантов с энергией выше 30 кэВ. Во время запуска весной 1976 г. наблюдался источник Геркулес Х-1 и измерялась интенсивность высокоэнергетического излучения.

Чем совершеннее экспериментальная техника, тем слабее непосредственный контакт наблюдателя с получаемыми им экспериментальными данными. В 1936 г. Хоффмейстер мог просто посмотреть в телескоп, оценить яркость HZ Геркулеса и, сравнив ее со своими прежними наблюдениями, определить, увеличилась ли яркость звезды по сравнению с предыдущим наблюдением. Сегодня результаты измерений записываются компьютером на магнитную ленту; затем необходимо составить программу, в соответствии с которой компьютер будет считывать результаты с ленты и производить расчеты.

Неудивительно поэтому, что результаты майских наблюдений были получены лишь осенью. Выяснилось, что интенсивность излучения, в целом ослабевающая с увеличением энергии рентгеновских квантов, имеет заметный пик примерно на 58 кэВ (рис. 10.12). Вероятно, ему не придали бы особого значения, не вспомни Трюмпер о своих более ранних работах, в которых он пытался объяснить излучение пульсара в Крабовидной туманности. Поэтому он заинтересовался этим пиком.

Рис. 10.12. Рентгеновское излучение источника Геркулес Х-1 в области высоких энергий. Можно было бы ожидать, что с увеличением энергии рентгеновских квантов интенсивность источника падает. Однако при 58 кэВ наблюдается локальный пик интенсивности (отмеченный стрелкой). Измерение интенсивности при столь больших энергиях квантов сопряжено с большими трудностями, поэтому истинное распределение интенсивности может отличаться от показанного на рисунке.

Пик на кривой интенсивности рентгеновского излучения источника Геркулес Х-1 означает, что источник излучает относительно много рентгеновских фотонов с энергией 58 кэВ. Мы знаем, что атомы излучают и поглощают энергию на строго определенных длинах волн, т. е. излучают и поглощают фотоны со строго определенной энергией. Возьмем, например, атом водорода. Вокруг положительно заряженного ядра обращается один электрон (рис. 10.13). Согласно квантовой теории, этот электрон может занимать строго определенные, поддающиеся точному расчету орбиты (уровни). Когда на атом попадает свет, он поглощается лишь в том случае, когда квант света имеет точно такую энергию, какая необходима для перехода электрона с нижнего уровня на один из более высоких. Если после этого оставить атом в покое, то электрон через какое-то время вернется на низший уровень. При этом избыточная энергия будет освобождена в виде световых фотонов, которые обладают вполне определенными энергиями, соответствующими переходу электрона с одного уровня на другой.

Рис. 10.13. Вверху: излучение (красная волнистая стрелка) возникает в атоме, когда электрон (серый кружок) переходит с внешней орбиты на более близкую к ядру атома (красный кружок). Излучение имеет вполне определенную для данного атома и данного перехода энергию. Внизу: в сильном магнитном поле (вертикальные стрелки) электроны могут вращаться по круговым орбитам, подобным орбитам в атоме. Здесь при переходе с внешней орбиты на внутреннюю также будет излучаться энергия, зависящая от напряженности магнитного поля. Считают, что показанный на рис. 10.12 пик интенсивности рентгеновского излучения источника Геркулес Х-1 связан именно с таким переходом электронов в магнитном поле нейтронной звезды.

У источника Геркулес Х-1 заметная часть излучения приходится на вполне определенную энергию 58 кэВ. Однако ни один из нормально встречающихся в природе атомов не излучает фотонов с такой энергией. Трюмпер попытался объяснить это излучение механизмом, который впервые предложил советский физик Лев Ландау (диамагнетизм Ландау).

Оъяснение основано на том, что в магнитном поле траектория электрона искривляется настолько, что электрон начинает двигаться по круговой орбите. Если магнитное поле очень сильное, то радиус орбиты мал; в сверхсильных магнитных полях круговые траектории электронов могут стать сравнимыми с атомными орбитами. Но в этом случае в силу вступают законы квантовой механики, согласно которым «разрешены» лишь строго определенные орбиты. Когда электрон переходит с внешней орбиты на внутреннюю, он испускает квант излучения, энергия которого определяется напряженностью магнитного поля. Поэтому, считали Трюмпер и его коллеги, и появляется пик на кривой излучения источника Геркулес Х-1. Но если это так, то магнитное поле должно быть более чем в сто миллиардов раз сильнее земного! Силы, возникающие в таком поле, настолько велики, что гравитация не смогла бы удержать белый карлик в равновесии: магнитные поля разорвали бы звезду. Поэтому следует заключить, что Геркулес Х-1 является нейтронной звездой.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*