Николай Левашов - Неоднородная Вселенная
— наличие атмосферы,
— наличие периодической смены дня и ночи,
— наличие разрядов атмосферного электричества.
Жизнь зарождается автоматически на всех планетах, где существуют перечисленные выше условия. И таких планет во Вселенной — миллиарды. Наша планета Земля не является уникальным творением природы.
4.3. Качественные особенности органических молекул и их роль при зарождении жизни
А сейчас рассмотрим, как при перечисленных выше необходимых условиях, зарождается и развивается жизнь. Морская вода, как всем известно, стала колыбелью жизни. В ней содержатся практически все химические элементы и многие соединения из них. Во время разрядов атмосферного электричества происходит деформация пространства. В воде, пронизываемой этими разрядами (молниями), возникает уровень мерности, при котором четырёхвалентные элементы (углерод, кремний, фосфор) начинают соединяться в цепочки. При этом, возникшие молекулы имеют не только структурные отличия, но приобретают и новые качества. Какие же новые качества возникают, при соединении тех же самых атомов в другом структурном порядке? Что заставляет нас разделять атомы, образующие один структурный порядок, от тех же самых атомов, создающих другой структурный порядок? Почему, в одном случае — неорганические соединения, а в другом — органические?
В силу того, что основой белковой жизни является углерод, достаточно проанализировать качественное отличие пространственных характеристик молекул, которые создаёт данный элемент, чтобы разгадать тайну зарождения жизни. Давайте попытаемся понять, к чему приводят различия структурной организации молекул. Рассмотрим неорганические структурные образования — кристаллы. Кристаллы представляют собой такие пространственные соединения, где атомы расположены друг относительно друга на практически одинаковых расстояниях. Эти расстояния соизмеримы с размерами самих атомов (10-14…10-12 метра). Причём, они (расстояния) практически одинаковы по всем пространственным направлениям (алмаз) или тождественны в каждой из пространственных плоскостей (графит). Эти кристаллы образованы атомами углерода (С), но они не являются основой не только живых организмов, но и органических молекул (Рис. 4.3.1, Рис. 4.3.2).
Рис. 4.3.1. Пространственная структура алмаза, в кристалле которого атомы углерода С располагаются на одинаковом друг от друга расстоянии. Расстояние между атомами углерода в кристалле алмаза соизмеримо с размерами самих атомов углерода. Поэтому никакие другие атомы и молекулы не только большего чем атом углерода размера, но и меньшего не в состоянии двигаться между ними. Возможна только лишь замена некоторых атомов углерода на другие, что приводит к тому, что прозрачный кристалл алмаза приобретает окраску. По этой причине человек имеет возможность любоваться красотой жёлтых, голубых, красных и чёрных алмазов, которые, обработанные рукой человека, превращаются в изумительные по своей красоте камни… Кроме этого, подобная кристаллическая решётка делает алмаз самым прочным соединением атомов в природе, и это делает его незаменимым в технике.
а. Расстояние между атомами углерода С в кристалле алмаза.
Рис. 4.3.2. Пространственная структура графита, в кристалле которого атомы углерода, в горизонтальной плоскости расположены на одинаковом расстоянии, в то время, как расстояние между слоями в вертикальной плоскости значительно больше расстояния между атомами углерода в горизонтальной. Такое, казалось бы, незначительное отличие в пространственном расположении атомов углерода делает эти кристаллы очень мягкими. Эта пространственная организация атомов углерода носит названия графита и очень широко используется в промышленности и в быту (стержни карандашей, в электронике и т. п.). Те же самые атомы углерода, что создают самое прочное соединение в природе — алмаз, создают и самый мягкий из природных кристаллических соединений — графит. Казалось бы незначительное изменения в пространственной структуре соединения атомов углерода превращает самое прочное соединение атомов в природе, в самое мягкое. Причина такого отличия в свойствах этих соединений углерода С заключаются в различных внешних условиях, при которых они образуются.
В чём причины того, что такие же атомы углерода, соединившись в другом пространственном порядке, стали фундаментом живой природы? А они (причины) — следствия качественных особенностей органических молекул (Рис. 4.3.3, Рис. 4.3.4). Качественные особенности органических молекул следующие:
Рис. 4.3.3. Пространственная структура углеродной цепочки. Соединяясь в цепочки, атомы углерода С могут создавать молекулы в сотни тысяч, миллионы атомных единиц. При этом, такие молекулы влияют на окружающий микрокосмос неравномерно, создавая вокруг себя анизотропную структуру микрокосмоса. Возможность создавать атомами углерода подобные соединения определяется тем, что он — четырёхвалентный. Именно это свойство электронных оболочек атомов углерода создаёт спектр качеств, благодаря которым, стало возможным появление жизни. Так называемые, внешние электроны атомов углерода способны создавать соединения с внешними электронами других атомов в перпендикулярных относительно друг друга направлениях. Именно это свойство позволяет атомам углерода С создавать различные пространственные соединения.
С — атомы углерода.
Н — атомы водорода.
Рис. 4.3.4. Пространственная структура цитозина, одного из четырёх нуклеотидов, структурно образующих молекулы ДНК и РНК. Соединяясь между собой, нуклеотиды образуют спирали молекул ДНК и РНК, которые являются фундаментом жизни. Чудо жизни рождается, как следствие качественно другого пространственного соединения атомов углерода между собой. Подобная пространственная структура соединения атомов углерода образуется в водной среде во время атмосферных разрядов электричества. Три вида соединения атомов углерода между собой порождают три вида пространственной организации материи — изотропную структуру алмаза, изотропную по двум пространственным направлениям и анизотропную по одному, структуру графита и, наконец, анизотропную по всем пространственным направлениям, структуру молекул ДНК и РНК. Таким образом, анизотропность материи является фундаментом жизни.
С — атомы углерода.
Н — атомы водорода.
О — атомы кислорода.
N — атомы азота.
1. Пространственная структура органических молекул неоднородна в разных пространственных направлениях.
2. Молекулярный вес органических молекул колеблется от нескольких десятков до нескольких миллионов атомных единиц.
3. Неравномерность распределения молекулярного веса органических молекул по разным пространственным направлениям.
И, как следствие перечисленных качественных особенностей, органические молекулы влияют неодинаково на окружающее их микропространство в разных пространственных направлениях. Особенно ярко это явление выражено у молекул РНК и ДНК (Рис. 4.3.5, Рис. 4.3.6).
Рис. 4.3.5. Пространственная структура сегмента молекулы РНК, представляющая собой последовательное соединение в цепочку нуклеотидов — гуанина, аденина, тимина и цитозина. Молекулярный вес этой молекулы составляет сотни тысяч, миллионы атомных единиц и распределён непропорционально в разных пространственных направлениях, что и является уникальным свойством этой молекулы. Пространственная анизотропность молекул ДНК и РНК является необходимым условием зарождения жизни. Именно пространственная неоднородность на уровне микрокосмоса создаёт необходимые и достаточные условия для появления живой материи. Для неживой материи характерно наличие изотропной, симметричной пространственной организации материи. Пространственная и качественная асимметрия — необходимые условия для живой материи. Не правда ли, любопытный парадокс природы? Асимметрия — живая материя. Пространственная неоднородность является не только причиной рождения звёзд и «чёрных дыр» во вселенной, но и причиной чуда природы — жизни.
Рис. 4.3.6. Пространственный вид с торца молекул РНК и ДНК. Спирали этих молекул создают в микропространстве как бы туннель, внутренний объём которого имеет радиальный перепад мерности. Внутри спиралей молекул РНК и ДНК создаётся анизотропная структура микропространства. Возникает своеобразная засасывающая воронка для всех молекул, которые при своём движении внутри клетки попадают в «опасную» близость от молекул ДНК и РНК. Не правда ли, любопытная аналогия с «чёрной дырой», которая засасывает в себя любую материю, попавшую на её «территорию» — область пространства, в пределах которого действует избыточное притяжение. Как в случае молекул ДНК и РНК, так и в случае «чёрных дыр» засасывание материи происходит в результате наличия некоторого постоянного перепада мерности в зоне расположения этих материальных объектов. Различие только в величине этого перепада мерности и в том, что в случае молекул ДНК и РНК имеют место процессы, происходящие на уровне микропространства, а в случае «чёрных дыр» — макропространства.