Евгений Ищенко - Двуликий электронный Янус
Двое американских инженеров еще весной 1968 года запатентовали электронные схемы, имитирующие процессы человеческого мышления (забывания, принятия решения). В патенте это изобретение описывается как центральная познавательная ячейка автоматического действия. Другая электронная машина, имитирующая процесс мышления, реагировала на окружающую среду с помощью искусственного глаза, состоящего из ряда фотоэлементов, и накопителя информации. Кстати сказать, это изобретение уже не первый год применяется в химической промышленности и для регулирования автотранспортных потоков.
В устройстве, изобретенном психологом, исследователем головного мозга Арнольдом Трегубом, с помощью электродов на основе эффекта электролитического осаждения моделируются соединения между нервными клетками. Это, по мнению ученого, напоминает процесс возникновения идей в мозгу человека. Такой компьютер способен использовать свой «жизненный опыт» и «усваивать» уроки оператора.
Японцы, как всегда, пошли дальше. Компания «Фудзицу» еще в начале 1988 года разработала технологию так называемого нейрокомпьютера, «функционирующего как человеческий мозг». По сути, это означает качественно новый этап в развитии компьютерной техники даже по сравнению с ЭВМ пятого поколения. Что же представляет собой достижение «Фудзицу»?
Объем памяти, скорость операций и прочие характеристики нынешних компьютеров могут отличаться разительно, однако основным ключом к каждому была и остается программа, заложенная в него человеком. Здесь же разработчики поставили иную задачу – научить компьютер самостоятельно думать и автономно действовать. Чтобы достичь этой цели, за основу был взят принцип работы человеческого мозга, по сути, создан первый прототип биокомпьютера, сочетающего в себе биотехнологию с электроникой.
Центральный элемент мозга – нейроклетка, впитывающая в себя, как губка воду, разнообразную информацию. В биокомпьютере ее роль играют особые полупроводники, именуемые «нейрочипами». В мозгу человека функционируют около 14 миллиардов нейроклеток, а нейрокомпьютер «Фудзицу» по его возможностям можно приравнять к 100 тысячам. Разрыв, нет слов, колоссальный. Но важно отметить, что существовавшие тогда суперкомпьютеры выполняли операции в объемах всего лишь шести мозговых клеток, поэтому создание биокомпьютера – не просто шаг вперед, а мощный рывок в развитии электронной техники.
Три года спустя была собрана действующая модель новой машины. Пока компьютерный мозг можно сравнить с мозгом ребенка, его многому предстоит научить. Но, получив нужные сведения, нейрокомпьютер уже не нуждается в постоянных подсказках и указаниях, он сам анализирует поступающую по собственным «клеткам» информацию, оценивает ее, просчитывает варианты возможных действий и из множества выбирает оптимальный. Сфера применения? Например, искусственный мозг для промышленных роботов…
Создание нейрокомпьютера велось в строжайшей тайне, за бетонными заводскими корпусами. И только когда «Фудзицу» убедилась в успехе, первая информация о компьютере шестого поколения просочилась в прессу.
Еще одна из ведущих компьютерных компаний недавно объявила о сенсационном изобретении своих инженеров. Им удалось создать элемент компьютерной цепи внутри одной молекулы. Новый элемент в сто тысяч раз тоньше человеческого волоса. В его основе лежат так называемые углеродные нанотрубки, которые, по мнению специалистов, представляют собой достойную альтернативу нынешним кремниевым процессорам.
Ученые давно и активно ищут замену кремнию, ибо в течение ближайших десяти лет возможности дальнейшей миниатюризации таких схем будут исчерпаны. Специалисты полагают, что им на смену придут углеродные нанотрубки. На их базе, вероятнее всего, и будут созданы сверхскоростные компьютеры, использующие ничтожное количество электроэнергии. Углеродная нанотрубка – это молекула, которая почти в 500 раз меньше молекулы кремния. При работе она выделяет меньше тепла, расходует меньше энергии и, подчеркну это особо, на порядок прочнее стали.
А что же мы – совсем отстали? Оказывается – нет. Очень радует, что именно Россия, обогнав Европу, недавно стала третьей в мире страной, создавшей компьютер производительностью триллион операций в секунду. Знай наших!
Ученые из Принстонского университета в начале 2004 года изобрели материалы, которые в будущем позволят создавать дешевые и сверхплотные электронные устройства памяти. В перспективе это будет пластиковая карточка, сохраняющая большой объем данных, считываемых намного быстрее, чем с компакт-диска. Устройство считывания тоже будет очень маленьким, поскольку в нем не нужны механические узлы, как на приводе CD-ROM.
Новое поколение электронных устройств совместит в себе органику (пластмасса) и неорганические компоненты (слой кремния). Это постоянные запоминающие устройства, которые не позволяют переписывать содержащуюся на карточке информацию. Такое устройство на основе полимера может хранить до 1 гигабайта информации (около тысячи высококачественных изображений) в одном кубическом сантиметре. И это, говорят, далеко не предел.
Хотя следует заметить, что сама идея оптического, а не электронного компьютера не так уж и нова. Эксперименты в этом направлении начались в недрах американского научно-исследовательского комплекса еще в конце 50-х годов прошлого века. Принципиальная разница между обычной ЭВМ и оптической состоит в том, что в последней циркулируют не электроны, а фотоны – частицы света. В отличие от вступающих между собой в реакцию электронов, они не мешают друг другу, не требуют особой проводяще-направляющей среды, могут проходить сквозь себе подобных без всякого ущерба. К тому же фотоны передвигаются быстрее, чем что-либо во Вселенной. Недаром же утвердилось нарицательное понятие – «скорость света».
Мощность современного компьютера определяется именно скоростью, с которой работают его компоненты, а также тем, насколько плотно они могут быть размещены. С обеих точек зрения фотоны представляют собой идеальный элемент такого устройства. Более того, оптический компьютер нуждается лишь в малой части той энергии, которую потребляет его электронный собрат. А значит, ему не грозит опасность перегрева, поэтому ОВМ поддается самой оптимальной компоновке. Трудность же заключается в том, что если в ЭВМ переключателями направления движения электронов служат микроскопические транзисторы, то задавать направление фотонам можно только каким-то оптическим способом. Долгое время эта задача казалась неразрешимой.
Но в 1990 году американец Алан Хуанг доказал «жизненность принципа ОВМ». Этим он очень обязан Дэвиду Миллеру, создавшему в 1986 году самый маленький в мире оптический переключатель, настолько маленький, что две их тысячи умещаются внутри буквы «о» обычного газетного шрифта. Тем самым была решена основополагающая проблема: найден эквивалент транзистору. Оптический переключатель Миллера, производимый из сложного синтетического материала, способен, не перегреваясь, изменить направление движения фотонов миллиард раз в секунду.
Взяв переключатель Миллера за основу, Алан пять лет работал над схемой простейшей ОВМ, и она наконец была представлена на обозрение специалистов. Выглядела эта первая экспериментальная ОВМ далеко не так импозантно, как современные ей модели электронных компьютеров. Их возможности тоже пока были несопоставимы: ОВМ не имела «памяти» и могла производить лишь элементарные математические действия. Однако в Центре оптических исследований США считают, что Хуанг хорошо «подтолкнул стрелку на часах технологического прогресса».
Сам же изобретатель полагает, что уже вскоре наиболее мощные вычислительные устройства заимеют оптические «внутренности». Скептики, а их немало, возражали, что преимущества ОВМ должны быть поистине подавляющими, чтобы после всех многомиллиардных затрат промышленный мир решился заменить уже существующий парк компьютеров.
Но, видимо, неоспоримая теоретическая истина, что ОВМ способна функционировать в тысячу раз быстрее, чем ЭВМ, кое-что да значит. Во всяком случае для японцев, которые, как известно, весьма преуспели по части электроники. И если 13 крупных японских компаний, в том числе такие гиганты, как «Мицубиси» и «Ниппон электрик», вместе с Министерством промышленности сочли нужным разработать 10-летний план оптических исследований, то похоже, что завтрашний день вычислительной техники надо искать именно в этом направлении.
В 1994 году американский исследователь Питер Шон подсчитал, что квантовый компьютер вычислит факториал тысячезначного числа всего за несколько часов. В то время как несколько сотен обычных компьютеров потратили бы на эту задачу 1025 лет. Для справки: возраст Вселенной – 1010 лет. Впечатляет?
Быстрыми темпами идет и миниатюризация компьютеров. Так, 33-летний X. Шрикумар, специалист по автоматическим системам из Массачусетского университета (США), в 1999 году создал компьютер величиной с таблетку аспирина. Его мини-компьютер запрограммирован на работу в глобальной сети Интернет, а также способен управлять домашними электроприборами и аппаратурой. Мини-компьютер, вмонтированный в соответствующие устройства, может в нужное время сварить кофе, записать телепередачи на видеомагнитофон и даже самостоятельно включиться в компьютерную сеть. Он состоит из миниатюрного процессора и чипа электронной памяти, куда поступают данные из Интернета.