Дмитрий Гусев - Удивительная логика
25. Из спичек сделан рисунок рюмки, наполненной вином (рис. 44). Переставьте две спички так, чтобы на вновь получившемся рисунке вино оказалось вне рюмки. (При демонстрации роль вина может сыграть спичка.)
26. Как расположить шесть сигарет таким образом, чтобы все они соприкасались друг с другом, т. е. чтобы каждая из них касалась пяти остальных?
27. Перед вами стоят три человека. Один из них Правдолюб (всегда говорит правду), другой Лжец (всегда лжет), а третий Дипломат (то говорит правду, то лжет). Вы не знаете, кто есть кто, и задаете вопрос человеку, который стоит слева:
– Кто стоит рядом с тобой?
– Правдолюб, – отвечает он.
Потом вы спрашиваете человека, стоящего в центре:
– Кто ты?
– Дипломат, – отвечает тот.
И, наконец, вы спрашиваете человека, который стоит справа:
– Кто стоит рядом с тобой?
– Лжец, – отвечает он.
Кто же стоит слева, кто – справа, кто – в центре?
28. В десятилитровом ведре находится 10 литров вина. В вашем распоряжении два пустых ведра: объем одного из них 7 литров, а другого – 3 литра. Как с помощью этих ведер путем переливаний разделить 10 литров вина на две одинаковые части по 5 литров?
29. У Андрея часы отстают на 10 минут, но он уверен, что они на 5 минут спешат. Он договорился с Катей встретиться ровно в 8 часов у электрички, чтобы поехать за город. У Кати часы на 5 минут спешат, но она думает, что они отстают на 10 минут. Кто из них первым придет к поезду?
30. Черепаха, которой 110 лет, спросила динозавра: «Сколько тебе лет?» Динозавр, привыкший выражаться сложно и запутанно, ответил: «Мне сейчас в 10 раз больше лет, чем было тебе тогда, когда мне было столько же лет, сколько тебе сейчас». Сколько лет динозавру?
31. Угонщик похитил автомобиль, пытаясь пробраться в пункт В, однако был обнаружен милицией в пункте А. Уходя от погони, он начал петлять, двигаясь из А в В по кривой ACDB по дугам малых полуокружностей так, как это показано стрелками (рис. 45). Преследовавшие его милиционеры стартовали из А мгновением позже и, надеясь перехватить угонщика в пункте В, отправились по дуге большой полуокружности. Догонят ли они угонщика в пункте В, если их скорости совершенно одинаковы?
32. Кате вдвое больше лет, чем будет Насте тогда, когда Оле исполнится столько лет, сколько сейчас Кате. Кто из них самый старший по возрасту, а кто самый младший?
33. В одном классе ученики разделились на две группы. Одни должны были всегда говорить только правду, а другие – только неправду. Все ученики класса написали сочинение на свободную тему, а в конце сочинения каждый ученик должен был приписать одну из фраз: «Все здесь написанное – правда», «Все здесь написанное – ложь». Всего в классе было 17 правдолюбцев и 18 лжецов. Сколько сочинений с утверждением о правдивости написанного насчитал учитель при проверке работ?
34. Сколько всего прапрадедушек и прапрабабушек было у всех ваших прапрадедушек и прапрабабушек?
35. На столе разложен носовой платок. В его центре стоит горлышком вниз пустая стеклянная бутылка. Как вытянуть платок из-под бутылки, не прикасаясь к ней?
36. В левой части равенства надо поставить только одну черточку (палочку) для того, чтобы равенство получилось истинным:
5 + 5 + 5 = 550.
37. Докажем, что три раза по два будет не шесть, а четыре. Возьмем спичку, сломаем ее пополам. Это первый раз два. Потом возьмем половинку и сломаем ее пополам. Это второй раз два. Затем возьмем оставшуюся половинку и ее тоже сломаем пополам. Это третий раз два. Получилось четыре. Следовательно, три раза по два будет четыре, а не шесть. Найдите ошибку в этом рассуждении.
38. Как соединить девять точек между собой четырьмя линиями, не отрывая карандаша от бумаги (рис. 46)?
39. В магазине хозяйственных товаров покупатель спросил:
– Сколько стоит один?
– Двадцать рублей, – ответил продавец.
– Сколько стоит двенадцать?
– Сорок рублей.
– Хорошо, дайте мне сто двенадцать.
– Пожалуйста, с вас шестьдесят рублей. Что покупал этот человек?
40. Если в 12 часов ночи идет дождь, то можно ли ожидать, что через 72 часа будет солнечная погода?
41. Три человека заплатили за обед 30 рублей (каждый по 10 рублей). После их ухода хозяйка обнаружила, что обед стоит не 30 рублей, а 25 рублей, и отправила мальчика вдогонку, чтобы вернуть 5 рублей. Путники взяли по 1 рублю, а 2 рубля оставили мальчику. Выходит, что каждый из них заплатил не по 10 рублей, а по 9. Их было трое: 9 · 3 = 27, и еще 2 рубля у мальчика: 27 + 2 = 29. Куда делся еще один рубль?
42. В бассейн площадью 1 гектар налили 1 000 000 литров воды. Можно ли плавать в таком бассейне?
43. Что больше: ?
44. У одного мальчика не хватает до стоимости линейки 24 копеек, а у другого не хватает до этой стоимости двух копеек. Когда они сложили свои деньги вместе, то все равно не смогли купить линейку. Сколько стоит линейка?
45. В одном парламенте депутаты разделились на консерваторов и либералов. Консерваторы говорили по четным числам только правду, а по нечетным – только неправду. Либералы, наоборот, говорили только правду по нечетным числам, а по четным числам – только неправду. Каким образом с помощью одного вопроса, заданного любому депутату, можно точно установить, какое сегодня число: четное или нечетное? Ответы должны быть определенными: «да» или «нет».
46. Бутылка с пробкой стоит 1 рубль 10 копеек. Бутылка дороже пробки на 1 рубль. Сколько стоит бутылка и сколько стоит пробка?
47. Катя живет на четвертом этаже, а Оля – на втором. Поднимаясь на четвертый этаж, Катя преодолевает 60 ступенек. Сколько ступенек надо пройти Оле, чтобы подняться на второй этаж?
48. Математик написал на листке двузначное число. Когда он перевернул листок вверх ногами, число уменьшилось на 75. Какое число было написано?
49. Прямоугольный лист бумаги сложили пополам 6 раз. На сложенном листе, не на сгибах, сделали 2 дырки. Сколько дырок будет на листе, если его развернуть?
50. Два отца и два сына поймали трех зайцев: каждый по одному. Как такое возможно?
51. Собеседник предлагает вам задумать любое трехзначное число. Потом он просит продублировать его, чтобы получилось шестизначное число. Например, вы задумали число 389, продублировав его, получаете шестизначное число 389 389; если задумано число 546, получится 546 546 и т. п. Далее собеседник предлагает вам это шестизначное число разделить на 13. «Вдруг получится без остатка», – говорит он. Вы производите деление с помощью калькулятора (можно и без него) и действительно ваше число делится на 13 без остатка. Далее он предлагает вам получившийся результат разделить на 11. Вы делите, и опять получается без остатка. И, наконец, собеседник просит вас разделить получившийся результат на 7. Деление не только проходит без остатка, но и дает в результате то самое трехзначное число, которое вы произвольно выбрали сначала. Каким образом это происходит?
52. Разделите фигуру, состоящую из трех одинаковых квадратов, на четыре равные части (рис. 47).
53. Сто школьников одновременно изучали английский и немецкий языки. По окончании курсов они сдавали экзамен, который показал, что 10 школьников не освоили ни тот, ни другой язык. Из оставшихся немецкий сдали 75 человек, а 83 выдержали экзамен по английскому. Сколько экзаменовавшихся владеет обоими языками?
54. Каким образом из кружки, ковшика, кастрюли и любой другой посуды правильной цилиндрической формы, наполненной до краев водой, отлить ровно половину, не используя никаких измерительных приборов?
55. Часовая и минутная стрелки иногда совпадают, например, в 12 часов или в 24 часа. Сколько раз они совпадут между 6 часами утра одного дня и 10 часами вечера другого дня?
56. Теплоход доплывает от Нижнего Новгорода до Астрахани за 5 суток, обратный путь он проделывает с той же скоростью за 7 суток. За сколько суток от Нижнего Новгорода до Астрахани доплывет плот?
57. Три курицы несут три яйца за три дня. Сколько яиц снесут 12 куриц за 12 дней?
58. Как написать число 100 с помощью пяти единиц и знаков действий?
59. Давайте подсчитаем, сколько дней в году мы работаем, а сколько отдыхаем. В году 365 дней. Восемь часов в день уходит у каждого на сон – это 122 дня ежегодно. Вычитаем, остается 243 дня. Восемь часов в день занимает отдых после работы, это тоже 122 дня в год. Вычитаем, остается 121 день. По выходным, которых в году 52, никто не работает. Вычитаем, остается 69 дней. Далее, четырехнедельный отпуск – это 28 дней. Вычитаем, остается 41 день. Примерно 11 дней в году занимают различные праздники. Вычитаем, остается 30 дней. Таким образом, мы работаем всего один месяц в году. Верно ли это рассуждение? Если нет, то какая ошибка в нем допущена?