KnigaRead.com/

Кирилл Еськов - История земли и жизни на ней

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Кирилл Еськов, "История земли и жизни на ней" бесплатно, без регистрации.
Перейти на страницу:

В заключении остановимся на одном существенном отличии экосистем древних (палеозойских и мезозойских) озер от современных. Это полное отсутствие погруженных макрофитов, за исключением харовых водорослей (которые депонируют биогены почти на порядок хуже, чем покрытосеменные). Основными продуцентами там скорее всего были плавающие маты, причем в мезозое получили распространение водорослевые маты на каркасе из высших растений. В триасе это были плевромейи — крупные плавающие плауновидные (что-то вроде сильно увеличенного полушника), по виду напоминающие морской буй, где в роли верхней сигнальной лампочки выступает пучок листьев и спорангии; листья, скорее всего, плавали по поверхности воды, постепенно отгнивая с вершины[48]. На каркасе из этих плауновидных возникали плавающие острова из мелких водяных мхов и печеночников (типа любимой аквариумистами риччии), а снаружи все это обрастало зелеными водорослями и цианобактериями; на этих матах существовала богатая фауна беспозвоночных: в палеозое — сходные с многоножками растительноядные эвтикарциноиды, позже — ракообразные и насекомые.

Поскольку все фотосинтезирующие структуры были сосредоточены на поверхности озера (а дно было к тому же еще и затенено), гиполимнион почти всегда был асфиксным и безжизненным, а озера легко эвтрофицировались. Однако в непосредственной близости от плавающего мата концентрация кислорода в воде могла быть очень высока; возможно, именно этим объясняется присутствие в составе фауны эвтрофных (судя по составу отложений) мезозойских озер целого ряда групп насекомых, являющихся ныне реофилами (обитателями быстрых, богатых кислородом рек и ручьев). Кроме того, в составе этих фаун комбинируются как пресноводные формы, имеющие адаптации к водному образу жизни, так и наземные (которые могли «ходить пешком» по поверхности плавающего мата). Эти имевшие огромную биомассу и богатые животным белком «плавучие острова» могли составлять основу питания для многих позвоночных, включая и динозавров. Окончательно экосистемы такого типа исчезли лишь в кайнозое, когда на дне водоемов возникли заросли погруженных макрофитов из покрытосеменных (типа элодеи), резко увеличившие разнообразие и устойчивость пресноводных экосистем. Это и дало А.Г. Пономаренко основание разделить всю историю континентальных водоемов на два принципиальных этапа: первый — от докембрия до середины палеогена (когда основными продуцентами были маты, сперва прикрепленные, затем — плавающие), а второй — от середины палеогена доныне (когда эту роль стали играть погруженные макрофиты).

10. Эволюция наземных позвоночных (1): поздний палеозой — ранний мезозой. Анамнии и амниоты. Две линии амниот — тероморфная и завроморфная

Мы с вами расстались с самыми первыми тетраподами (девонской ихтиостегой и родственными ей формами) когда те… Чуть было не сказал: «Делали первые шаги по суше», но нет — мы ведь теперь знаем, что существа те были чисто водными… Скажем лучше так, более осторожно: «Получили принципиальную возможность периодически покидать водную среду». Да и что они, собственно говоря, могли бы найти на той суше — кроме перегрузок из-за многократного увеличения собственного веса, теплового удара да смертоносного обезвоживания организма?.. Пищу? Какую пищу — в девонском-то периоде? В общем, в девоне целенаправленный «выход на сушу» был бы даже не авантюрой, а чем-то по разряду мазохизма. Есть пятипалая конечность, позволяющая при необходимости переползти из совсем уже пересохшей лужи в не совсем пересохшую — и ладно…

Ситуация принципиально изменилась с начала карбона, когда в уже знакомых нам «лесах-водоемах» возникла богатая фауна из амфибиотических и наземных членистоногих — паукообразные, многоножки, а потом и насекомые: за этот ресурс уже стоило побороться. Среди карбоновых амфибий появляются небольшие (менее 1 м), похожие на современных саламандр антракозавры, имеющие несомненные приспособления к наземной жизни и явно ориентированные на питание беспозвоночными (а не рыбой — как их более крупные родственники). Именно антракозавров считают предками рептилий[49]; первые рептилии — карбоновые капториниды — напоминали по внешнему виду крупных ящериц, причем, судя по строению их челюстного аппарата, они специализировались именно на питании насекомыми. Впрочем, не будем забегать вперед.

Чем объяснить итоговый эволюционный неуспех амфибий? Ведь этот класс процветал только в карбоновом периоде (причем — только на территории тогдашних тропиков, в Еврамерии: ни в Ангариде, ни в Гондване по сию пору не найдено ни единой косточки карбонового возраста[50]), когда у него не было конкурентов; во все же остальные времена они занимали сугубо подчиненное положение в экосистемах — как наземных, так и пресноводных. Судя по всему, амфибий сгубила даже не облигатная связь с водой (они не выработали яйца и размножаются икрой), а неисправимое несовершенство их дыхательной системы, предопределившее целую цепь пренеприятнейших анатомо-физиологических следствий. Давайте по порядку.

Из курса зоологии вы должны помнить, что лягушка не имеет ни ребер, ни диафрагмы. Поэтому она — в отличие от нас — неспособна делать вдох, увеличивая объем замкнутой грудной полости, и вынуждена нагнетать воздух в легкие крайне несовершенным способом: набирать его в ротовую полость, замыкать ее, а потом «проглатывать» воздух, поднимая дно ротовой полости и сокращая ее объем. Итак, легочное дыхание у амфибий развито слабо.

Слабость легочного дыхания не позволяет амфибиям освободить от дыхательных функций кожу. Об этом обычно упоминают в той связи, что земноводные должны всегда сохранять покровы влажными (именно в этой влаге и растворяется воздушный кислород, «всасываемый» затем кожей), а потому они навсегда прикованы к воде. Это верно — однако это еще полбеды. Хуже другое: не освободив от дыхательных функций кожу, невозможно изолировать друг от друга большой и малый круги кровообращения и отделить венозную кровь от артериальной. Появление легких у тетрапод привело к возникновению двух кругов кровообращения; при этом правая сторона сердца становится «венозной», а левая — «артериальной». У амфибий сердце трехкамерное — два предсердия и желудочек; у рептилий — формально! — тоже трехкамерное, но в желудочке возникает неполная продольная перегородка, делящая его на «венозную» и «артериальную» половины. В ходе дальнейшей эволюции перегородка становится полной, а сердце — четырехкамерным (хотя у крокодилов с птицами и у млекопитающих это происходит по-разному). У амфибий же кислород приносят в сердце вены, идущие не только от легких (малый круг) но и от кожи (большой круг), и потому создавать какую-либо перегородку между правой и левой половинами желудочка бессмысленно, а кровь в сердце всегда будет смешанной — артериально-венозной. Пока же кровь не разделена на артериальную и венозную, уровень энергетического обмена организма будет принципиально невысоким. К тому же при постоянно влажных покровах любое повышение температуры тела будет тут же сводиться на нет за счет поверхностного испарения — термическое охлаждение. Все это полностью закрывает амфибиям путь к достижению любых вариантов эндотермии («теплокровности»)[51] — с понятными эволюционными последствиями.

Из-за единственно доступного для амфибий способа наполнения легких («проглатывания» воздуха — гулярное дыхание) необходимо сохранять «подчелюстной насос», поднимающий и опускающий дно ротовой полости. Размещение последнего требует совершенно специфической («лягушачьей») формы черепа — очень широкой и приплюснутой. При этом челюстная мускулатура оказывается размещенной крайне невыгодным образом: ее можно подсоединить лишь к самому челюстному суставу, с задней его стороны; получающийся в результате рычаг будет крайне неэффективен — все равно, как если бы мы затворяли дверь, упираясь не в ручку, а около петель. Для того, чтобы развивать при помощи таких челюстей сколь-нибудь приличные усилия, приходится наращивать объем челюстной мускулатуры; в итоге эта мускулатура занимает практически все пространство черепа, попросту не оставляя места для мозговой коробки. То есть амфибии — существа принципиально «безмозглые», и это закрывает им путь к сложным формам поведения.

Отсюда понятно, как следует бороться (в эволюционном смысле) со всем этим комплексом неприятностей: надо радикально перестроить дыхательную систему. Именно анализируя переход от амфибий к рептилиям, Н.Н. Иорданский (1977) выдвинул свой принцип ключевого ароморфоза — изменение в одной системе органов, ведущее к целому каскаду последовательных прогрессивных перестроек всего организма.

Достаточно наладить нормальное легочное дыхание (путем изменения объема грудной полости), как приведенные выше цепочки начинают «раскручиваться» в обратную сторону. Убрав «подчелюстной насос», мы можем сделать череп высоким и узким, подвести жевательную мускулатуру к челюсти не сзади, а сверху (как у нас с вами), уменьшить — за счет улучшения рычага — ее объем и отдать освободившееся место под «мозги»; кроме того, такое расположение жевательных мышц позволит в дальнейшем не только удерживать схваченную добычу, но и пережевывать пищу (рисунок 37). Освободив кожу от дыхательных функций, мы получаем возможность разделить круги кровообращения и резко интенсифицировать обмен веществ. Эти инженерные решения вполне однозначны, равно как и необходимость одеть икринку особой оболочкой — амнионом, как бы создающей для зародыша маленький искусственный водоем и делающим его развитие независимым от водной среды; отсюда фундаментальное разделение позвоночных на «прикованных к воде» анамний (рыб и амфибий), и «истинно сухопутных» амниот — рептилий, птиц и млекопитающих). А вот дальше начинается интереснейший эволюционный выбор, когда вариантов — два, в обоих есть свои плюсы и свои минусы.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*