Леонард Млодинов - Прямоходящие мыслители. Путь человека от обитания на деревьях до постижения миро устройства
Наконец-то Ньютон закрыл свою алхимическую лабораторию и отложил теологические изыскания. Лекции он читать продолжал, раз требовалось, однако получались они до странности смутные и путаные. Позднее стало понятно почему: Ньютон попросту являлся на занятия и читал черновики «Принципов».
* * *Пусть Ньютон несколько десятков лет после получения должности в Колледже Св. Троицы не мог довести работу о силе и движении до конца, но в 1680-х он располагал куда более мощным интеллектом, нежели был у него в чумные 1660-е. Он теперь оказался гораздо лучше математически подготовлен, а благодаря занятиям алхимией имел и научный опыт. Некоторые историки даже считают, что именно годы занятий алхимией сделали возможным прорыв в изучении движения и написание «Принципов».
Парадокс: одним из катализаторов Ньютонова прорыва стало письмо, которое, как он вспоминал, он получил пятью годами ранее – от Роберта Гука. Тот предложил смотреть на движение по орбите как на сумму двух разных воздействий. Рассмотрим тело (например, планету), обращающееся по круговой орбите вокруг некоего другого тела, притягивающего его (как Солнце). Предположим, что обращающееся тело имеет склонность продолжать движение по прямой – то есть слететь с круговой орбиты и понестись дальше, как автомобиль, водитель которого не вписался в поворот на мокрой трассе. Математики называют это движением по касательной, или тангенциальным.
Теперь допустим, что у тела есть вторая склонность – притяжение к центру орбиты. Математики называют это движение нормальным, или центростремительным. Склонность к центростремительному движению, писал Гук, может быть дополняющим к тангенциальному, и тогда вместе они обеспечивают движение по орбите.
Легко понять, как это соображение отозвалось в Ньютоне. Вспомним, что, совершенствуя закон инерции Галилея, Ньютон предположил у себя в «Черновой книге», что все тела склонны продолжать движение по прямой, если нет внешнего воздействия на них, то есть силы. Для тела на орбите первая склонность – слететь с орбиты по прямой – естественно вытекает из этого закона. Ньютон понял, что, если добавить в эту картину силу, притягивающую тело к центру орбиты, возникнет причина центростремительного движения – второй необходимой составляющей, предложенной Гуком.
Но как это описать математически и, в особенности, как установить связь между конкретной формулой закона обратных квадратов и конкретными математическими свойствами орбит, описанными Кеплером?
Мысленно поделим время на крошечные интервалы. В каждом интервале времени тело, движущееся по орбите, можно представить себе движущимся по касательной на очень маленькие расстояния и в то же время центростремительно – тоже понемножку. Сумма этих движений возвращает тело на орбиту, но чуточку дальше вдоль окружности, чем вначале. Повторив эту последовательность много раз, получим зубчатую круговую орбиту, как показано на рисунке.
Круговое движение, возникающее из движения по касательной (тангенциального) и центростремительного (нормального).
Если на такой орбите взять достаточно малые промежутки времени, траектория будет совпадать с окружностью сколь угодно плотно. И вот тут пригодились наработки Ньютона в математическом анализе: если интервалы бесконечно малы, траектория в данном конкретном случае и есть окружность.
Таково описание орбит, какое позволила составить новая математика Ньютона. Он сложил вместе изображение тангенциального движения тела по орбите и нормального «падения», получилась зубчатая траектория – а затем взял предельный случай такого движения, в котором линейные сегменты сделались исчезающе малы. Таким образом зубчатость изгладилась до окружности.
Орбитальное движение в таком варианте есть движение любого тела, которое постоянно отклоняется от движения по касательной под действием силы, тянущей его к некоему центру. Дело в шляпе: применив закон обратных квадратов для описания центростремительной силы в математике орбит, Ньютон воспроизвел три закона Кеплера, как и просил Галлей.
Доказательство, что свободное падение и движение по орбите суть два проявления одних и тех же законов силы и движения, – один из величайших триумфов Ньютона, поскольку это раз и навсегда опровергло заявление Аристотеля, что небеса и Земля – разные «царства». Астрономические наблюдения Галилея выявили, что другие планеты очень похожи на Землю, работа Ньютона же доказала, что законы природы применимы и к другим планетам, а не только к Земле.
Но даже в 1684 году, тем не менее, Ньютоново понимание силы тяготения и движения не были внезапными всплесками ясности, на какие намекает история с падающим яблоком. Напротив, революционная мысль[209] о том, что сила тяготения – всемирна, дошла до Ньютона, похоже, постепенно, пока он дорабатывал черновики «Принципов».
Прежде ученые, если и подозревали, что у планет есть сила тяготения, считали, что это тяготение воздействует только на их луны, но не на другие планеты, словно каждая планета – отдельный замкнутый мир со своими законами. Ньютон и сам поначалу разбирался лишь с тем, распространяется ли причина падения тел к Земле на притяжение Луны Землей, но не с притяжением планет Солнцем.
Следует признать творческую силу Ньютона, незашоренность его мысли: он усомнился в привычном мировоззрении. Он написал одному английскому астроному и запросил даты движения комет в 1680 и 1684 годах, а также орбитальные скорости Юпитера и Сатурна в момент их сближения. Произведя изнурительные расчеты по присланным очень точным данным и сравнив результаты, Ньютон удостоверился, что одни и те же законы тяготения применимы повсюду – на Земле и меж небесных тел. Он внес это замечание в текст «Принципов».
Мощь законов Ньютона – не только в их революционном понятийном содержимом. Применяя их, он смог получать предсказательные результаты с неслыханной доселе точностью и сравнивать их с экспериментально полученными. К примеру, применив данные о расстоянии до Луны и радиусе Земли и приняв во внимание такие мелочи, как искажение лунной орбиты из-за притяжения Солнца, центробежную силу вращения Земли и отклонение формы Земли от идеального шара, Ньютон заключил, что на широте Парижа тело, брошенное из положения покоя, пролетит за первую секунду пятнадцать футов и одну восьмую дюйма[210]. Это, сообщил неизменно дотошный Ньютон, соответствует эксперименту с точностью до одной трехтысячной доли[211]. Более того, он кропотливо повторил эксперимент с разными материалами – золотом, серебром, свинцом, стеклом, песком, солью, водой, деревом и пшеном. Любое тело, пришел он к выводу, независимо от своего устройства, хоть на Земле, хоть на небесах, притягивает любое другое тело, и притяжение это всегда подчиняется одним и тем же законам.
* * *Когда Ньютон «добрался до основания» начатого, работа «О движении тел по орбите» распухла с девяти страниц до трех томов – до «Принципов», а точнее – «Математических принципов натуральной философии».
«Принципы» Ньютон посвятил не исключительно движению тел по орбите – он подробно излагал теорию силы и движения как таковую. Суть движения – взаимосвязь трех количественных параметров: силы, импульса (который Ньютон называл количеством движения) и массы.
Мы уже знаем, как Ньютон силился сформулировать свои законы. Теперь давайте посмотрим на сами законы и разберемся в их значении. Первый – уточнение Галилеева закона инерции, но с важным дополнительным утверждением, что сила есть причина изменений:
Первый закон Ньютона: Всякое тело продолжает оставаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.
Ньютон, как и Галилей, определяет движение, при котором тело перемещается по прямой с постоянной скоростью, как естественное положение дел. Поскольку ныне мы склонны думать в ньютоновских понятиях, оценить, до чего неочевидно это представление, затруднительно. Но движение, которое мы наблюдаем вокруг, в основном не происходит по Ньютонову описанию: предметы, падая, ускоряются или же замедляются сопротивлением воздуха – или движутся по искривленным траекториям, перемещаясь к земле. Ньютон считал, что эти виды движения – в некотором смысле отклонения от нормального, результат действия незримых сил вроде гравитации или трения. Если предоставить тело самому себе, говорил он, оно будет двигаться равномерно, а если траектория движения искривляется, или же меняется скорость, это происходит под действием внешних сил.
Факт, что тела, предоставленные себе, продолжают сохранять свое состояние движения, позволяет нам исследовать космос. На Земле «феррари», к примеру, может разогнаться с нуля до шестидесяти миль в час менее чем за четыре секунды, однако, чтобы сохранять эту скорость, автомобилю приходится изрядно стараться – из-за сопротивления воздуха и трения. Средство перемещения в открытом космосе сталкивается с одной случайной молекулой примерно раз в сто тысяч миль, и потому о трении или торможении можно не беспокоиться. Это означает, что достаточно разогнать космическое судно, и оно продолжит двигаться по прямой с постоянной скоростью без замедления, в отличие от «феррари». А если не выключать двигатели, можно продолжать разгоняться, не теряя при этом энергии на трении. Если, скажем, ваш космический корабль разгоняется со скоростью «феррари», и разгон продолжится год, а не секунду, удастся достичь половинной скорости света.