Рудольф Киппенхан - Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд
Рис. 9.3. В полуразделенной двойной системе более массивная компонента (красная точка) еще находится на главной последовательности, а менее массивная (красный кружок) уже ушла с главной последовательности. Не противоречит ли это теории, согласно которой более массивная компонента должна первой покинуть главную последовательность?
Это, однако, переворачивает с ног на голову все наши представления об эволюции звезд. Мы уже видели, что более массивные звезды эволюционируют быстрее и свой запас водорода расходуют раньше. Здесь же мы имеем дело с двумя звездами одного возраста, и при этом менее массивная первой проявляет признаки выгорания. В том, что возраст компонент двойной одинаков, сомневаться не приходится. Звезды должны были образоваться одновременно, поскольку захват одной звезды другой невозможен. Почему же менее массивная звезда стареет раньше? Неужели наши основные представления об эволюции звезд неверны?
Представления о развитии звезд приводят нас к затруднениям не только в случае двойных звезд типа Алголя-сложности возникают и при рассмотрении разделенных двойных.
Обратимся, например, к Сириусу. Мы уже знаем, что он образует двойную систему со своим спутником, белым карликом с массой 0,98 солнечной. Расчеты на ЭВМ показывают, что звезда с массой меньше солнечной может превратиться в белый карлик не раньше, чем через 10 миллиардов лет после своего возникновения. Поэтому спутник Сириуса должен в любом случае быть намного старше нашего Солнца. Главная же звезда системы имеет массу в 2,3 солнечных, и поэтому должна развиваться гораздо быстрее.
Однако она обладает всеми признаками молодой звезды, существующей за счет термоядерного горения водорода. Получается, что и в этой системе более массивная компонента еще не израсходовала свой водород, а менее массивная, напротив, уже вошла в стадию угасания.
Сириус не является патологическим исключением существует много двойных звезд, в которых менее массивный белый карлик соседствует с более массивной «молодой» звездой.
Двойные звезды в компьютере
Собственно говоря, в основных положениях теории звездной эволюции сомневаться не следовало. В конце концов результаты теории очень хорошо согласовались с наблюдениями звездных скоплений. Почему же с эволюцией звезды начинается такая неразбериха, когда она находится в двойной системе, а не в звездном скоплении, где звезды удалены друг от друга на значительные расстояния? Дело тут может быть только во взаимном влиянии звезд друг на друга.
Основной эффект состоит не в деформации, которую испытывают подобные близко расположенные звезды: отклонение формы звезды от сферической затрагивает только ближайшие к поверхности слои, которые не играют практически никакой роли в эволюции. Главное здесь в том, что звезда не может быть сколь угодно большой.
Представим себе, что звезда по известным причинам расширяется, и происходит это до тех пор, пока она не достигнет своего максимально допустимого объема — объема своей полости Роша. При дальнейшем расширении звезды часть ее внешней оболочки попадет в полость Роша ее спутника. Отсюда вещество расширяющейся звезды должно падать на спутник. Вот в этом и состоит особенность эволюции тесно расположенных двойных звезд: масса звезды может претерпевать со временем резкие изменения. Ведь каждая звезда начинает расширяться, когда в ее центре запасы водорода истощаются в результате ядерных реакций с выделением энергии.
В двойной системе, где вначале, как на рис. 9.2, а, компоненты полностью разделены, более массивная компонента первой расходует свой водород и готова уже превратиться в красный гигант. Однако довольно скоро она, расширяясь, заполняет свою полость Роша, по мере дальнейшего расширения ее масса переходит к звезде-спутнику. Но что происходит дальше, сразу сказать трудно.
И вновь на помощь приходит компьютер. По существу дальнейшее мало чем отличается от эволюции одиночной звезды. Нужно только вразумительно растолковать компьютеру, что в распоряжении расширяющейся звезды имеется лишь ограниченный объем. Компьютер должен рассчитать величину этого объема на каждый момент эволюции звезды и сравнить его с объемом самой звезды. Если объем звезды окажется больше ее полости Роша, то избыточную массу следует отнять и рассчитать модель для звезды с соответственно меньшей массой. Избыток же массы переходит к другой звезде. Перенос массы от одной звезды к другой приводит к изменению сил притяжения каждой из них, а также скорости вращения и, следовательно, центробежной силы. Поэтому компьютер должен всякий раз вновь рассчитывать объемы полостей Роша и определять, находятся ли звезды после передачи массы внутри своих полостей Роша или же происходит дальнейший унос вещества с одной из звезд на другую. Таким образом, на вычислительной машине удается моделировать эволюцию звезд, обменивающихся массой, и мы получаем в распоряжение аппарат, позволяющий исследовать развитие двойных звездных систем на различных примерах.
Первое решение «парадокса Алголя» предложил Дональд Мортон в своей диссертации, которую он подготовил в начале 1960 года в Принстоне у М. Шварцшильда. К 1965 году на компьютере научились моделировать и более сложные этапы звездной эволюции, и мы с Альфредом Вайгертом в Гёттингене занялись этой задачей. Нам удалось рассчитать несколько вариантов эволюции двойных систем. Приведем здесь лишь два примера.
История первой звездной пары: возникновение полуразделенной системы
Этот расчет был первым из произведенных нами. Исходными послужили две звезды с массой в 9 и 5 солнечных, обращающиеся одна относительно другой с периодом 1,5 суток на расстоянии 13,2 солнечных радиуса. Поначалу эволюционирует более массивная компонента; скорость эволюции менее массивной компоненты сравнительно мала. По мере того, как звезда с массой в 9 солнечных масс расходует все большую и большую долю своего водорода, ее внешняя оболочка медленно расширяется. Через 12,5 миллионов лет количество водорода в центре звезды уменьшается примерно наполовину, и к этому времени звезда расширяется настолько, что подходит к границам своей полости Роша. На диаграмме Г-Р (рис. 9.4) ее теперешнее состояние изображается точкой а. Дальнейшее расширение звезды становится невозможным: ее вещество должно переходить к спутнику.
Рис. 9.4. Эволюция тесной двойной системы с компонентами в 5 и 9 солнечных масс. У более массивной компоненты истощение запасов водорода начинается раньше. Она могла бы стать красным сверхгигантом (красная пунктирная линия). Однако уже в точке а она полностью заполняет свою полость Роша, и в результате быстрой передачи массы своему спутнику переходит в точку b (красная штриховая линия), а менее массивная компонента перемещается по главной последовательности вверх (черная штриховая стрелка). Звезда, которая была более массивной, а теперь стала менее массивной компонентой, дожигает в своей центральной области остатки водорода и переходит из точки b в точку с, где ее масса равна теперь всего трем солнечным, в то время как масса ее спутницы равна 11 солнечным (цифрами на диаграмме обозначены массы компонент в массах Солнца).
Расчет показывает, что передачи малой доли вещества недостаточно, чтобы остановить увеличение объема звезды. Дальнейшая эволюция происходит катастрофически: за 60 000 лет звезда отдает своему спутнику 5,3 солнечных массы из своих 9, и масса спутника становится равной 5 + 5,3 — 10,3 солнечных массы. Звезда-спутник накопила такое количество звездного вещества, что ее масса стала существенно больше. За время, очень малое по звездным масштабам, более массивная и менее массивная компоненты двойной поменялись ролями. «Ограбленная» звезда находится теперь на диаграмме Г-Р в точке b. Ранее, когда она еще была более массивной компонентой двойной, она израсходовала значительную часть своего водорода и теперь является «старой» звездой. Поэтому она стоит справа от главной последовательности. Для нее наступает период медленной эволюции, во время которого она сжигает в центре остатки своего водорода. При этом она постепенно расширяется и в течение следующих десяти миллионов лет понемногу отдает массу своей звезде-спутнику.
Компонента, которая имеет теперь большую массу, начинает понемногу стариться. Но еще многие миллионы лет она не покинет главную последовательность. В этот период двойная система обладает всеми признаками, характерными для системы Алголя: более массивная компонента еще не состарилась и находится на главной последовательности, а менее массивная уже ушла с главной последовательности и полностью заполняет свою полость Роша!
Причина того, что в Млечном Пути мы наблюдаем только такие двойные, в которых быстрый обмен массой либо еще не произошел (разделенные системы), либо уже завершился (полуразделенные системы), состоит в следующем: время, в течение которого происходит обмен веществом, в 200 раз короче периодов спокойной эволюции до и после обмена. Соответственно и шансов застать систему «с поличным» в момент обмена в 200 раз меньше. В принципе Дональд Мортон дал верное описание пятью годами раньше в своей диссертации.