KnigaRead.com/

Александр Проценко - Энергетика сегодня и завтра

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Александр Проценко, "Энергетика сегодня и завтра" бесплатно, без регистрации.
Перейти на страницу:

Наступило время «второго дыхания» ветра. Вновь начинается массовое строительство ветряков. Пример подает все та же Голландия. Там объявлено о проекте строительства ветроэнергетической установки, состоящей из 10 или 20 ветродвигателей мощностью по 300–500 киловатт. Планируется и создание ветродвигателей мощностью в несколько мегаватт.

Основная трудность связана с переменной силой ветра. Мощность ветростанции пропорциональна скорости воздушных струй в третьей степени. Предположим, станция с диаметром колеса 50 метров при не очень большой скорости ветрового потока — 8 метров в секунду — имеет мощность около 1000 киловатт. Если же скорость понизится вдвое, то мощность упадет сразу до 120 киловатт, а то и ниже. Станция практически перестает работать.

С другой стороны, при возрастании скорости ветра резко повышается мощность, и чтобы ее регулировать, сначала достаточно изменить угол атаки лопастей, а потом при некоторой критической величине нужно останавливать ветроколесо. Естественно, башня должна сдерживать напор бурь и ураганов. С этим связана ее большая металлоемкость и дороговизна

Энергия ветров пока дорога, но кое-где она вполне рентабельна. Так, соединив ветродвигатель с компрессором, можно экономично аэрировать водоемы, вентилировать овощехранилища. Во многих районах ветродвигатели целесообразно сочетать с опреснительными установками. Станции малой мощности способны обслуживать водопойные пункты в степях. В СССР уже налажено производство четырехкиловаттных станций, смонтированных на семиметровой башне. Для орошения оазисов нужны установки с мощностью в десятки и даже сотни киловатт.

Разработан проект большого ветродвигателя мощностью 2500 киловатт в виде огромного двухлопастного колеса диаметром 100 метров, установленного на 60-метровой башне. Пока столь большие мощности доступны лишь в экспериментальных или опытно-промышленных установках. А вот установки мощностью 100–300 киловатт и сейчас можно эффективно использовать, например, в прибрежной 100-километровой полосе вдоль Северного Ледовитого океана — в первую очередь в районах Надымского и Тазовского газовых месторождений, где средняя скорость ветра 5 метров в секунду, а на севере Ямала — вдвое больше.

Существует также проект ветростанции башенного типа с восемью ветровыми двигателями. Башня закреплена на вращающейся тележке и с помощью специального электродвигателя всегда ориентирует ветроколеса в оптимальном направлении. По оценкам проектантов, себестоимость электроэнергии составит всего 0,4 копейки за киловатт-час. Между тем электроэнергия, вырабатываемая на Севере дизельной электростанцией, обходится в 10 раз дороже. Правда, расчеты себестоимости сделаны при допущении, что ветер будет беспрерывно дуть с постоянной скоростью А ведь ветродвигатель даже в «ветреных» северных районах вряд ли проработает на номинальной расчетной мощности больше 2500–4000 часов.

Значит, необходимы аккумуляторы энергии, а они стоят недешево.

Предложено еще несколько интересных конструкций ветродвигателей, в которых изобретатели стараются преодолеть недостатки лопастных ветростанций башенного типа.

Например, по кольцевому рельсовому пути ветер гоняет тележки, снабженные алюминиевыми крыльями-парусами. Колеса тележек соединены с электрогенераторами, отдающими через рельсы ток в сеть. Уже построена небольшая опытная установка с крыльями высотой около 10 метров.

В конструкции, которая получила название «яйцесбивалка», ось ветродвигателя — вертикальная. На ней размещено эллипсовидное алюминиевое кольцо длиной 27 и шириной 5 метров, которое и есть привычная нам лопасть. Высота созданной экспериментальной установки 19 метров (большая ось эллипса), а ширина — 5 метров (малая ось). Мощность двигателя — 100 киловатт.

У этой конструкции — ряд преимуществ. Она использует ветер, дующий с любой стороны. Отпадает необходимость в оборудовании для фиксации и поворота ветродвигателей. Алюминиевые плоскости кольца в пять раз дешевле лопастей из композитных материалов, применяемых в привычных нам ветродвигателях. Кроме того, становится ненужной башня. Впрочем, от дорогостоящей башни удалось избавиться и в другой установке, предложенной немецким инженером Г. Вагнером.

Представьте себе две лопасти с углом между ними 110 градусов. Они вращаются вокруг оси, наклоненной к горизонту под углом 55 градусов. Благодаря такой геометрии башня оказывается лишней. Когда при вращении оси одна лопасть смотрит вверх, то другая проходит над землей горизонтально.

Ветряки Вагнера, автоматически принимающие необходимое положение по отношению к ветру, можно размещать на судах и понтонах. На понтоне в Северном море уже работает опытный образец. Есть у этой конструкции и недостатки. С потоком ветра встречается всегда только одна лопасть, и ее длину для получения большой мощности нужно существенно увеличивать. Изобретатель предлагает убрать одну из двух дорогих лопастей, установить вместо нее только противовес. Тем самым можно сэкономить на изготовлении крыла сложного профиля и редукторе, так как ветряк станет вращаться вдвое быстрее.

Разговор о ветре закончим проектом будущего. Примерно раз в месяц на черноморский город Новороссийск обрушивается сильнейший ураган — бора. Раз в год он приобретает катастрофический характер. Виной всему — тянущийся вдоль Цемесской бухты Вакадский хребет.

Он не пропускает с Кубанской низменности, расположенной за хребтом, холодный воздух к морю. Но вблизи от города в хребте есть одна низкая точка — седло, через которое время от времени и устремляются скопившиеся воздушные массы.

Специалисты-энтузиасты предлагают «спасти» город от напасти и заодно использовать силу боры. Для этого сквозь хребет нужно пробить три шахты, которые соединяются в один туннель под склоном, обращенным к морю. Затем достаточно установить в туннеле воздушную турбину.

Интересный, красивый и, будем надеяться, осуществимый проект.

Океаны энергии

Океан — огромная кладовая беспокойной энергии.

Здесь рождаются приливы и отливы, текут такие могучие реки, которых не знает суша, плещут волны.

Мощность океанских течений Куросио и Гольфстрим достигает трех миллиардов киловатт. Еще несколько десятилетий назад появились предложения об использовании энергии этих гигантских океанских «рек». Сегодня разработаны и конкретные проекты. Так, по мнению американских энтузиастов-энергетиков, при скорости течения 5–7 километров в час турбина диаметром 170 метров и длиной 80 метров, закрепленная якорем на глубине 30 метров под поверхностью океана, сможет обеспечить мощность 50 тысяч киловатт. Американские энтузиасты-энергетики предложили проект, согласно которому двести алюминиевых турбин, установленных под водой в 30 километрах от побережья Флориды, будто бы дадут 10 миллионов киловатт.

Не все специалисты уверены в правильности расчетов.

«Нужно изучить, как изменится скорость течения и его температура. Не погубят ли рыбу вращающиеся лопасти алюминиевых турбин?» — тревожатся океанологи.

«Не дорого ли передавать энергию из-под воды на расстояние десятков километров? Смогут ли станции проработать 30 лет в океане?» — вопрошают оппоненты.

Пока решено построить опытную установку с турбиной диаметром 10 метров.

Океан аккумулирует много солнечной энергии, но распределяется она неравномерно. Вода нагревается в тропических и субтропических зонах и оттуда растекается к полюсам. Холодная вода от полюсов течет в обратном направлении, но уже в глубине океана. Разница температур между поверхностью океана и на полукилометровой глубине может составлять 30 градусов. Если имеется столь значительная разность температур, то в принципе несложно создать электрогенератор.

Устройство для получения электроэнергии не отличается принципиально от существующих тепловых электростанций. Нагретая солнцем океанская вода с температурой 24–28 градусов в теплообменнике испаряет аммиак. Пары аммиака вращают турбину электрогенератора и поступают в другой теплообменник, где охлаждаются пятиградусной водой и конденсируются. Одна из основных трудностей — как поднять с полукилометровой или километровой глубины громадные массы холодной воды. Скажем, электростанция мощностью 200–400 мегаватт потребует для своей работы 5 тысяч кубических метров такого охладителя в секунду, что лишь немного уступает стоку Волги. Труба, пропускающая этот огромный водный поток, должна будет иметь диаметр около 30 метров.

Предлагается использовать вместо аммиака теплую морскую воду. Чтобы превратить ее в пар, с помощью вакуум-насосов в 15 раз понижается атмосферное давление. Вода закипает, пары направляются в турбину, а из нее попадают в конденсатор, охлаждаемый морской водой с глубины. Достоинство этой схемы — не нужен аммиак или фреон. Кроме того, в конденсаторе побочно получается пресная вода. Но не будут ли выделяющиеся при испарении морской воды растворенные в ней газы препятствовать созданию необходимого вакуума? Не уйдет ли вся генерируемая полезная мощность на вакуумнасосы?

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*