KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » С. Виноградов - Логика. Учебник для средней школы. [Издание восьмое. Утверждён Министерством просвещения РСФСР.]

С. Виноградов - Логика. Учебник для средней школы. [Издание восьмое. Утверждён Министерством просвещения РСФСР.]

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн С. Виноградов, "Логика. Учебник для средней школы. [Издание восьмое. Утверждён Министерством просвещения РСФСР.]" бесплатно, без регистрации.
Перейти на страницу:

Но этот вывод ложен, ибо мы знаем доказанную уже теорему о том, что «Из всякой точки, лежащей вне прямой, можно опустить на эту прямую только один перпендикуляр».

А раз ложно утверждение, что из всякой точки, лежащей вне прямой, можно опустить на эту прямую два перпендикуляра, то ложно и допущенное нами на минуту положение о том, что два перпендикуляра к одной и той же прямой при продолжении пересекаются, ибо это есть также нарушение теоремы о том, что «Из всякой точки, лежащей вне прямой, можно опустить на эту прямую только один перпендикуляр». Ведь два перпендикуляра, пересекающиеся при продолжении, есть два перпендикуляра, опущенные из одной точки на эту же самую прямую.

Так мы доказали, что допущенное на минуту в качестве истинного положение, противоречащее нашему тезису, о том, что «Два перпендикуляра к одной и той же прямой при продолжении пересекаются», ложно.

В результате мы получили два противоречащих суждения: «Перпендикуляры пересекаются» и «Перпендикуляры не пересекаются».

По закону исключённого третьего известно, что из двух противоречащих суждений одно необходимо ложно, а другое необходимо истинно и третьего между ними быть не может. Действительно, перпендикуляры к одной и той же прямой или пересекаются, или не пересекаются. Никакого третьего положения даже представить невозможно.

А раз мы доказали, что суждение «Два перпендикуляра к одной и той же прямой при продолжении пересекаются» ложно, то отсюда совершенно необходимо следует, что противоречащее суждение «Два перпендикуляра к одной и той же прямой не могут пересечься, сколько бы их ни продолжали» — истинно. Что и требовалось доказать, как говорят в таком случае геометры.


Разделительное косвенное доказательство применяется в тех случаях, когда известно, что доказываемый тезис входит в число фактов, которые в своей сумме полностью исчерпывают все возможные факты по данному вопросу.

Способ такого доказательства заключается в следующем: отвергаются все факты, кроме одного, который и является доказываемым тезисом.

Так, если установлено, что первенство школы в беге на 100 метров оспаривали только учащиеся К., В. и Д., и если при этом нам стало известно, что ни К., ни В. не оказались первыми, то тем самым доказано, что первенство завоёвано учеником Д.

Ошибка, которая иногда встречается в разделительном косвенном доказательстве, состоит в том, что исследуются не все возможные факты. Истинность тезиса доказывается только при условии опровержения всех возможных предположений по рассматриваемому вопросу, кроме одного.

Применение косвенного доказательства связано с известной трудностью. В процессе косвенного доказательства приходится временно отклоняться от того тезиса, который обсуждается, привлекать дополнительный материал, что, конечно, осложняет весь процесс рассуждения. Но этот приём доказательства нужно знать, потому что в практической жизни нередко приходится иметь дело с таким положением, когда аргументов, которые бы прямо доказывали истинность тезиса, в данный момент не имеется.


§ 4. Правила доказательства


Для того чтобы доказательство действительно обосновывало тезис, надо соблюсти ряд совершенно необходимых правил.

ПЕРВОЕ ПРАВИЛО. На занятии кружка или на собрании иногда можно наблюдать такую картину: выступающий в прениях говорит очень гладко, приводит некоторые доводы, между которыми имеется известная связь. Но вот вы решаете уловить, какую же мысль развивает выступающий в прениях, каков его тезис. И оказывается, сделать это не так-то легко. Определить тезис очень трудно.

Таких «ораторов» подверг критике И. В. Сталин в речи на предвыборном собрании избирателей Сталинского избирательного округа гор. Москвы в декабре 1937 года. «Конечно, можно было бы сказать эдакую лёгкую речь обо всём и ни о чём, — говорил И. В. Сталин. — Возможно, что такая речь позабавила бы публику... Но, во-первых, я не мастер по таким речам. Во-вторых, стоит ли нам заниматься делами забавы теперь, когда у всех у нас, большевиков, как говорится, «от работ полон рот». Я думаю, что не стоит».

Для «мастеров» по лёгким речам характерно то, что они нарушают первое правило доказательства, которое гласит:

Тезис должен быть суждением ясным и точно определённым.

Нельзя доказывать тезис, если он не определён. В. И. Ленин говорил, что если мы хотим спорить по существу, то нужно ясно представлять то, что критикуем.

ВТОРОЕ ПРАВИЛО. В процессе доказательства часто требуется обосновать не только тезис, но и самые доводы. В результате иногда получается довольно длинная цепь суждений. Это обстоятельство некоторые оппоненты в спорах и дискуссиях используют для того, чтобы незаметно отклониться от тезиса и начать доказывать совсем не то, что имелось в виду с самого начала.

Подобное уклонение от тезиса является настолько широко распространённым, что оно даже получило специальное название: подмена тезиса или игнорирование тезиса, который должен быть доказан.

Например, анархисты хотели опровергнуть материалистическое учение К. Маркса и с этой целью доказывали, что «еда не определяет идеологию». Этот тезис доказать нетрудно, однако он никакого отношения к учению К. Маркса не имеет, так как К. Маркс никогда не говорил, что еда определяет идеологию, и, наоборот, указывал на неправильность такого тезиса.

В политической борьбе с представителями враждебного нам мировоззрения часто приходится встречаться с попытками буржуазии и её агентуры пойти на подмену тезиса.

Один из видов «подмены тезиса» носит название: кто чрезмерно доказывает — ничего не доказывает.

Например, некоторые монархисты в Греции, желая оклеветать бойцов Демократической армии, выступившей против фашистского режима, утверждали, что будто бы группа бойцов свободно перешла албано-греческую границу и скрылась в Албании. Чтобы доказать своё утверждение, монархисты старались доказать, что на одном из участков границы ночью вспыхивали огоньки карманных фонарей.

Таким образом, желая доказать, что греческие патриоты связаны с заграницей, монархисты доказывали другой тезис: на границе были видны вспышки карманных фонарей. Совершенно ясно, что если даже действительно в районе границы были вспышки фонарей, то из этого ещё совсем не следует, что границу переходили бойцы Демократической армии (могли быть и пограничники, и местные крестьяне, и др.).

Доказывая слишком много, монархисты не могли тем самым доказать своего тезиса.

Есть разновидность ошибки «подмена тезиса», которая состоит в том, что доказывается слишком мало. Например, кто-либо, взяв кусок какого-то вещества, стал утверждать, что это вещество — металл, так как оно проводит электричество. Но одного этого довода недостаточно: проводниками электричества могут быть не только металлы, а, например, графит и др.

Доказывать слишком мало — значит ничего не доказывать.

Другой вид ошибки «подмена тезиса» называется ссылка на личные качества человека.

Эта ошибка особенно часто встречается в спорах, в полемике. Она состоит в том, что доказательство истинности (или ложности) тезиса подменяется доказательством достоинств или недостатков человека, который защищает тезис.

Например, желая доказать ложность высказанного мнения, указывают на личные недостатки того, кто это мнение высказал.

Итак, второе правило доказательства гласит:

Тезис должен оставаться тождественным, т. е. одним и тем же на протяжении всего доказательства.

ТРЕТЬЕ ПРАВИЛО. Первые два правила доказательства относятся к тезису. Но есть правила, которые распространяются на доводы, или аргументы. Доводы, как мы знаем, — это такие суждения, истинность которых должна быть несомненна. Ни одно доказательство не может строиться на ложных основаниях. Отсюда совершенно естественно вытекает третье правило доказательства:

Доводы, приводимые в подтверждение тезиса, должны быть истинными, не подлежащими сомнению.

Самым серьёзным нарушением третьего правила доказательства является логическая ошибка, которая называется основным заблуждением.

Существо её состоит в том, что тезис обосновывается ложным доводом. Такую ошибку делали, например, учёные до Коперника, когда они доказывали, что Солнце вращается вокруг Земли. Ошибкой в объяснении процессов горения была теория флогистона, которая была опровергнута русским учёным М. В. Ломоносовым, открывшим закон сохранения веса вещества.

В течение нескольких десятилетий многие биологи исходили в своих теоретических работах из ложного положения, согласно которому органическая жизнь ведёт начало только от клетки. Выдающееся открытие О. Б. Лепешинской отвергло это «основное заблуждение» и тем самым опрокинуло антинаучные мнения о вечности органических форм, о невозможности самозарождения, которые являлись следствием ложных исходных посылок буржуазного биолога Вирхова.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*