Александр Потупа - Бег за бесконечностью
Приведенный пример обычно называют «черным ящиком»; название возникло в кибернетике. Для физики оно не совсем подходит, поскольку в физике представление о каком-то «черном» объекте связано с такой характеристикой: он способен все поглощать, но ничего не выпускает, во всяком случае, не отражает. Но дело, конечно, не в словах. Основная ценность такого примера в ясной демонстрации активности экспериментатора. На ящик можно глубокомысленно взирать, но никогда не постичь его устройства, если не воздействовать на его «входы» всеми доступными сигналами и не осмысливать их связи с ответами.
При исследовании частиц, в частности адронов, физики так и поступают: они воздействуют одними частицами на другие и пытаются выяснить строение самих частиц и природу сил, действующих между частицами.
Адроны особенно интересны в этом отношении. Они оказались первыми элементарными частицами, которые, в сущности, неэлементарны и обладают сложной внутренней структурой.
Как вы помните, начальные подозрения в неэлементарности адронов были связаны просто с обилием адронного мира. Весь опыт науки подсказывал, что если наблюдается множество различных объектов одного класса, то они непременно должны быть составлены из гораздо меньшего количества более элементарных объектов. Такова, в сущности, атомистическая традиция, и она пока не подводила физиков.
Попытки свести все наблюдаемое многообразие адронов к каким-то более фундаментальным частицам привели к модели кварков, которая действительно позволяет «сконструировать» любой адрон из нескольких более простых частиц. Несмотря на то, что кварки не были выбиты из адронов, серьезных сомнений в составной природе сильно взаимодействующих представителей микромира у физиков нет.
Но вывод о том, что, скажем, протон составлен из трех кварков, еще не достаточен для полного понимания его структуры. Нужно знать закономерности сил, действующих между кварками, а также представлять себе дополнительные элементы структуры адрона. Нет ли внутри его каких-то иных объектов? Не потребуется ли дополнять чисто кварковую картину какими-либо новыми представлениями?
Важность вопросов такого типа хорошо видна на примере самых первых шагов в микромир. Как вы помните, открытие электрона сыграло решающую роль в постижении структуры атомов. Физики практически сразу осознали, что электроны — непременные составляющие атомов. Однако до тех пор, пока в резерфордовских экспериментах не было проведено прямое зондирование атомной структуры, об устройстве атомов существовали лишь более или менее правдоподобные догадки.
Нечто аналогичное произошло и в адронной физике. Попытки прямого зондирования структуры адронов были предприняты немедленно, как только в руках у исследователей оказались подходящие инструменты.
В 1956 году группа американских физиков под руководством Р. Хофстэдтера приступила к изучению взаимодействия электронов с нуклонами и дейтронами атомными ядрами дейтерия. Пучок электронов с очень большой (по тем временам!) энергией до 0,6 ГэВ выводился на мишени из водорода или дейтерия. Электроны рассеивались протонами или дейтронами, состоящими из протонов и нейтронов, на некоторые углы относительно направления падения пучка, и физики непосредственно изучали распределение рассеянных электронов по этим углам. Форма такого распределения и должна была дать информацию о строении адронов. В чем же заключалась идея опыта? Под какую модель он ставился?
Дело в том, что теория, а именно — квантовая электродинамика, считала, что электрон представляет собой совершенно бесструктурную, точечную частицу. Во всяком случае, при тех энергиях, при которых ставились опыты, никаких нарушений этого положения не должно было проявляться. Далее, согласно той же теории электрон должен был взаимодействовать с любым другим электрическим зарядом вполне определенным образом, обмениваясь фотоном.
В общем, электрон выступал в этом опыте как объект с достаточно хорошо известными свойствами. Поэтому с его помощью можно было четко выяснить и свойства других, возможно, более сложных объектов.
Если бы он взаимодействовал с такой же электрически заряженной бесструктурной частицей, то закономерности рассеяния можно было бы совершенно точно предсказать и на основе квантовой электродинамики. Иными словами, физики заранее знали, как будет выглядеть распределение рассеянных электронов, если адроны начисто лишены структуры, то есть являются точечными частицами. Имея определенный эталон для точечных адронов, физики вполне справедливо считали, что всякое отклонение от этого эталона окажется прямым доказательством существования структуры.
Конечно, теоретики имели и некоторые предварительные соображения о форме и размерах нуклонов и атомных ядер. Эти соображения основывались на многолетнем изучении ядерных сил в физике атомного ядра, на тех свойствах адронов, которые уже были известны из экспериментов по их взаимодействию и сводились к следующему.
Нуклоны взаимодействуют с большой интенсивностью. Взаимодействие между ними обусловлено обменом пи-мезонами. Следовательно, пи-мезоны испускаются и поглощаются нуклонами с большой вероятностью, гораздо большей, чем фотоны. Даже если нуклон «изолирован» от других адронов, он может испускать и тут же поглощать пи-мезоны, как бы взаимодействуя сам с собой. Такие пи-мезоны называются виртуальными, и они могут отойти от нуклона не очень далеко, на расстояние, не превышающее 10–13 сантиметра. Поскольку они испускаются очень часто, то вокруг нуклона образуется как бы пи-мезонное облако, а также и облака из других мезонов. Вокруг какого нуклона? Да того, который получился бы при полном выключении сильных взаимодействий, то есть точечного бесструктурного нуклона. В реальном мире такое выключение сделать нельзя, и поэтому нуклон всегда должен быть окружен мезонными облаками и как бы размазан по небольшому объему пространства.
Конечно, эти соображения носили лишь качественный характер — ведь настоящей теории ядерных сил не существовало! Однако они неплохо оправдались.
Эксперименты группы Р. Хофстэдтера показали, что протон и нейтрон обладают четко выраженной структурой. Нуклон не является точечной частицей, а представляет собой своеобразный сгусток какого-то особого вещества, размазанного по области с размером порядка 10–13 сантиметра. Энергия электронов в этих экспериментах как раз и позволяла заглянуть на такие расстояния и прощупать распределение электрического заряда во внешней оболочке нуклона.
Так сложная структура адронов была обнаружена экспериментально. Конечно же, сложное распределение электрического заряда было установлено для атомных ядер. Впоследствии прямые эксперименты позволили заглянуть и в пи-мезоны. У них тоже обнаружилась четко выраженная структура.
Хотя качественное представление о том, что электрон «видит» сложное распределение виртуальных мезонов, в основном справедливо, полное объяснение экспериментальных данных оказалось не столь уж простым делом. Фотоны пришлось наделять очень интересными новыми свойствами. Дело в том, что непосредственное взаимодействие между электрическими зарядами происходит только при обмене фотоном между ними. Но надо было считать, что фотон может на малую часть времени превращаться в особый тип мезонов и, следовательно, с некоторой вероятностью участвовать в сильных взаимодействиях.
Так была обнаружена структура адронов в электромагнитных взаимодействиях. Но еще сильней эта структура проявлялась во взаимодействиях между адронами.
При упругом рассеянии адронов друг на друге возникает чрезвычайно сложная картина их распределения по углам рассеяния, ни в малейшей степени не напоминающая ту картину, которая появляется при взаимодействии точечных частиц. Это, конечно, и не удивительно — ведь теперь уже взаимодействует как бы два сгустка адронного вещества, два сложных структурных объекта.
Очевидные трудности в понимании картины адрон-адронного рассеяния связаны с тем, что ни одну из сталкивающихся частиц нельзя рассматривать как зонд с хорошо известными свойствами, как это делалось в случае электрон-адронного рассеяния.
Если бы физики имели возможность изучать структуру адронов единственным способом, сталкивая их с другими адронами, то они уподобились бы, скажем, древним эллинам, которым выдан неограниченный запас транзисторных радиоприемников и предложено изучить устройство этих вещей также единственным способом — сталкивая между собой приемники с возможно большей силой…
Где прячутся кварки?
Итак, все эксперименты свидетельствовали в пользу сложной структуры адронов. Физикам стало ясно, что адроны выглядят как чрезвычайно плотные сгустки вещества с радиусом порядка 10–13 сантиметра. Однако до поры до времени зондирование адронной структуры проводилось не слишком глубоко. Грубо говоря, результаты экспериментов позволяли представить себе внешний слой адрона, но его внутренние области практически не были изучены.