KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Уолтер Левин - Глазами физика. От края радуги к границе времени

Уолтер Левин - Глазами физика. От края радуги к границе времени

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Уолтер Левин, "Глазами физика. От края радуги к границе времени" бесплатно, без регистрации.
Перейти на страницу:

Я всегда предлагаю студентам принести в аудиторию свои музыкальные инструменты, чтобы мы могли оценить различные коктейли гармоник, которые производит каждый из них.

Когда я подношу к микрофону камертон для получения концертного ля, на экране появляется обычная синусоида частотой 440 герц. Линия четкая и чрезвычайно правильная, потому что, как мы уже знаем, камертон генерирует только одну частоту. Но когда я прошу студента, принесшего на лекцию скрипку, сыграть ту же ля, картинка на экране становится куда интереснее. По сути, мы видим то же самое: на экране явно доминирует синусоида, но теперь кривая гораздо сложнее из-за более высоких гармоник. А если сыграть ля на виолончели, картинка опять поменяется. А представляете, что происходит, если скрипач играет две ноты одновременно!

Когда физику резонанса демонстрируют певцы, пропуская воздух через голосовые связки (кстати, куда более точным и описательным был бы термин «голосовые складки»), мембраны вибрируют и создают звуковые волны. На лекции я прошу кого-либо из студентов спеть, и осциллограф рассказывает такую же историю – на экране громоздятся не менее сложные кривые линии.

Во время игры на пианино клавиша, на которую вы нажимаете, заставляет молоточек ударять по струне – проволоке, – длина, вес и натяжение которой настроены так, чтобы она вибрировала при заданной первой частоте гармоники. Но каким-то образом, как и в случае со скрипичными струнами и голосовыми связками, струны пианино вибрируют одновременно и на более высоких гармонических частотах.

А теперь сделайте огромный мысленный прыжок, чтобы перескочить из мира музыки в субатомный мир, и представьте себе сверхкрошечные струны, похожие на скрипичные, но намного меньше атомного ядра, которые колеблются на разных частотах и с разными гармониками. Иными словами, подумайте о том, что фундаментальными строительными блоками материи являются эти крошечные вибрирующие струны, которые генерируют так называемые элементарные частицы – кварки, глюоны, нейтрино и электроны, – вибрируя на разных гармонических частотах и в разных направлениях. Если вам удалось совершить этот непростой шаг, считайте, что вы только что постигли основное положение «теории струн» – обобщающий термин, используемый для описания усилий, предпринимаемых физиками-теоретиками на протяжении последних сорока лет с тем, чтобы предложить единую теорию, которая бы позволила объяснить все элементарные частицы и силы, действующие во Вселенной. То есть в некотором смысле они хотят предложить теорию «всего».

Сегодня никто не имеет ни малейшего представления, удастся ли подтвердить эту теорию, а нобелевский лауреат Шелдон Глэшоу вообще задался вопросом, является ли она «физической или философской». Но если она верна, и базовыми элементами Вселенной действительно являются различные резонансные уровни невообразимо крошечных струн, значит, наша Вселенная, равно как и ее силы и элементарные частицы, представляет собой своего рода космическую версию замечательных, постепенно усложняющихся вариаций Моцарта на тему старинной английской детской песенки «Сияй, малютка звездочка».

Все объекты имеют свои резонансные частоты, от бутылки кетчупа в вашем холодильнике до высочайших небоскребов; многие из них таинственны и крайне трудно предсказуемы. Если вы водите автомобиль, вам наверняка приходилось слышать и его резонансы, хотя вряд они приносили усладу вашим ушам. Почти все водители во время вождения слышали шум, который исчезает, когда авто набирает скорость.

В моей последней машине, стоило мне остановиться на светофоре на холостом ходу, приборная панель, казалось, сразу же переходила на свою основную частоту. А если я жал на газ, разгоняя двигатель, то, даже не двигаясь с места, изменял частоту вибрации автомобиля и шум исчезал. Иногда какое-то время я слышал новый шум, который обычно прекращался, когда я начинал ехать быстрее либо медленнее. На разных скоростях, приводящих к разным частотам вибраций, мой автомобиль – и тысячи его частей, порой, увы, довольно разболтанных, – достигал резонансной частоты, скажем, немного отвинтившегося глушителя или разболтавшихся монтажных опор двигателя, и те начинали со мной разговаривать. Все они упорно твердили одно и то же: «Покажи меня механику, покажи меня механику». Но я упорно игнорировал эти просьбы до тех пор, пока не довел дело до серьезного ущерба, нанесенного этими резонансами. А когда мне в конце концов пришлось тащить машину в ремонт на буксире, я не смог воспроизвести эти ужасные звуки механику и чувствовал себя довольно глупо.

Помнится, в мою бытность студентом, когда во время официального обеда в моем братстве начинал выступать нежелательный оратор, мы брали свои бокалы и водили мокрыми пальцами вокруг обода, генерируя довольно громкий звук (можете попробовать сделать это дома). Это была основная частота наших винных бокалов. Понятно, что когда это одновременно делали сотни студентов (в конце концов, на то оно и братство), звук получался весьма сильным и противным, зато способ работал безотказно, и говорящий быстро понимал «тонкий» намек.

Вы наверняка слышали, что оперный певец, громко взяв ноту, может голосом разбить стеклянный бокал. Теперь, зная кое-что о резонансе, подумайте, как такое возможно? Довольно просто, по крайней мере теоретически, верно? Что произойдет, если взять бокал, измерить его основную частоту, а затем генерировать на ней звук? По моему опыту, в большинстве случаев ровным счетом ничего. Я лично никогда не видел оперного певца, разбивающего голосом бокал, поэтому и не привлекаю их к своим экспериментам. Я беру бокал, легонько стучу по нему ложкой и измеряю его основную частоту с помощью осциллографа – понятно, что она варьируется от бокала к бокалу, но для тех, которые я использую, всегда колеблется где-то в диапазоне от 440 до 480 герц. Затем я электронным способом генерирую звук точно такой же частоты (ну, совсем точно, конечно, это сделать невозможно, но я стараюсь получить максимально близкое значение). Я прикладываю бокал к усилителю и медленно увеличиваю громкость. Зачем я это делаю? Потому что чем громче звук, тем больше энергии в виде звуковой волны будет ударяться в стекло. И чем больше амплитуда колебаний в бокале, тем больше стекло будет прогибаться внутрь и выгибаться обратно – до тех пор, пока не разобьется (на что я и рассчитываю, проводя демонстрацию).

Чтобы показать, что стекло вибрирует, я крупно навожу на него камеру и подсвечиваю лучом стробоскопа, отрегулированным на несколько иную частоту, нежели звук. Это просто невероятно! Вы видите, как бокал начинает вибрировать; его две противоположные стороны сначала сходятся, а затем расходятся, и расстояние, на которое они смещаются, растет и растет по мере увеличения громкости динамика. Иногда мне приходится немного настроить частоту, а потом – бац! – и стеклянные осколки. Эта часть эксперимента особенно нравится студентам; они просто дождаться не могут, пока стекло лопнет.

А еще я обожаю показывать студентам штуки под названием «пластины Хладни», позволяющие демонстрировать резонанс невероятно причудливым и красивым способом. Это металлические пластины сантиметров тридцать в диаметре, которые бывают квадратными, прямоугольными или даже круглыми, но лучше всего квадратные. Они насаживаются в месте центра на стержень, или основание. Далее мы насыпаем на них мелкий порошок, а затем проводим скрипичным смычком вдоль одной из сторон, всей длиной смычка. Пластина начинает колебаться с одной или несколькими ее резонансными частотами. На пиках и падениях колеблющихся волн на пластине порошок будет стряхиваться, оставляя на металле прогалины, а в узлах, где пластина не вибрирует вообще, порошок будет, наоборот, накапливаться. (Струны имеют узловые точки, а двумерные объекты, такие как пластины Хладни, – узловые линии.)

В зависимости от того, как и где вы «играете» на пластине, проводя по ней смычком, вы будете возбуждать различные резонансные частоты и получите на ее поверхности удивительные, совершенно непредсказуемые узоры. В аудитории я использую более эффективную, но гораздо менее романтичную методику – вместо смычка прикрепляю пластину к вибратору и, изменяя его частоту, генерирую на пластине разные потрясающие узоры. Вы можете увидеть то, о чем я говорю, на YouTube по адресу: www.youtube.com/watch?v=6wmFAwqQB0g. Просто представьте себе математические принципы, лежащие в основе всех этих красот!

На публичных лекциях, которые я читаю маленьким детям, я обычно приглашаю малышей самих водить смычком по краю пластины – они просто обожают создавать красивые и загадочные узоры. Именно такие чувства к физике я стремлюсь пробудить во всех своих учениках.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*