Чарльз Флауэрс - 10 ЗАПОВЕДЕЙ НЕСТАБИЛЬНОСТИ. ЗАМЕЧАТЕЛЬНЫЕ ИДЕИ XX ВЕКА
Начиная с 1907 г., возглавляемая Морганом команда изучала передачу наследственных признаков у плодовой мушки Drosophila melanogaster, ставшей в дальнейшем излюбленной живой моделью биологов из-за быстроты размножения и плодовитости. Дрозофила способна породить 200-300 особей за двухнедельный жизненный цикл, что позволяет изучить в течение года передачу признаков у 24 поколений. Еще за четыре года до этого биологи установили, что передача наследственных признаков каким-то образом связана с хромосомами, представляющими собой стержневидные структуры из белков и нуклеиновых кислот. Хромосомы обязательно объединяются попарно и расположены в ядрах всех клеток живого организма, причем пара формируется из двух отдельных хромосом (по одной от каждого родителя), каждая из которых несет в себе полный набор наследственной информации от конкретного родителя, в результате чего каждый из них передает в клетку половину своего генетического наследства.
Плодовая мушка отличается не только скоростью размножения, но и удивительной простотой генетической информации, поскольку ее клетки содержат только четыре пары хромосом. Прослеживая передачу конкретных признаков во многих поколениях, удалось быстро и убедительно доказать, что во всех случаях соотношение доминантных и рецессивных признаков прекрасно согласуется с законом 3:1 в полном соответствии с законом Менделя. Более того, биологам удалось даже полностью расшифровать записанную в хромосомах дрозофилы информацию, т. е. связать ее с конкретными характеристиками. Это сделало плодовую мушку уникальным объектом генетических исследований, так как она стала одним из немногих видов живых существ на планете, для которого точно известен полный набор генов, т. е. наследственных факторов или элементов Менделя. Образно говоря, этот набор можно назвать правилами, которые «указывают» клеткам будущей плодовой мушки способы и методы их превращения во взрослую, полноценную плодовую мушку.
В строгих и четко организованных экспериментах сотрудников Моргана были обнаружены новые, неожиданные закономерности передачи наследственных признаков. Так, например, практически в каждом опыте по непонятным причинам появлялись и дрозофилы с удивительными признаками, отсутствующими у обоих родителей, что сперва пытались объяснить (в полном соответствии с теорией эволюции по Дарвину) исчезновением наследственных особенностей, оказавшихся ненужными для борьбы за выживание в новой среде обитания. Понятно, что лабораторные условия выращивания вовсе не были похожи на привычные многим поколениям мушек леса или сады, однако некоторые из этих новых признаков были настолько странными, что ученым пришлось задуматься и о других объяснениях. В январе 1910 г. среди прочих мушек с обычным, красным цветом глаз родилась удивительная, белоглазая мушка, что позволило поставить еще один необычный эксперимент, имевший впоследствии огромное значение. У первого потомства этой белоглазой мушки оказались глаза обычного, красного цвета, однако уже в следующем поколении соотношение по цвету пришло к привычной менделевской пропорции 3:1.
С наследованием признаков (т. е. с их будущей судьбой) все оказалось в порядке, но появилась проблема их возникновения (образно говоря, их прошлого). Естественно, возникает вопрос о том, где «прятался» ген бе-логлазости плодовой мушки до его обнаружения? Напомним, что ген по определению считался постоянным, не способным к изменениям «квантом» наследственности, поэтому неудивительно, что Морган, уже тогда считавшийся отцом американской генетики, мучительно искал и не мог найти на него ответ. В наши дни термин «мутация» является настолько общеизвестным и тривиальным, что его знают даже дети (хотя бы из самых примитивных книжек и фильмов разряда фэнтази), но в начале XX века это открытие знаменовало собой огромный прорыв в познании законов наследственности и эволюции вообще. Герман Мюллер, коллега Моргана по университету, сумел сперва обнаружить, что мутация цвета глаз дрозофилы связана с химическими изменениями в генной структуре, а затем и показать, что аналогичные изменения могут быть вызваны рентгеновским излучением или даже происходить спонтанно. В результате разносторонних и тщательных экспериментов было достоверно установлено, что изменения генетической информации родителей передаются их потомкам не только у мушек, но и у всех остальных представителей животного и растительного мира. «Древо жизни» оказалось способным к изменениям, поскольку мутировали сами гены, носители исходной информации различных биологических видов, из чего с неизбежностью следовал вывод о наличии в генах каких-то внутренних структур, способных к трансформации.
***
Расшифровка принципа структуры генов стала самой важной и увлекательной задачей биологии в первой половине XX века, а по мнению некоторых ученых, решение этой задачи имеет принципиальное значение для развитии науки вообще. Питер Медавар считает, что «не стоит даже спорить с дураками, не понимающими, что открытие Уотсона и Крика является величайшим научным достижением XX века». Авторами открытия стали Френсис Крик, Джеймс Уотсон, основываясь на открытии исследовательницы Розалинды Франклин. Об их роли очень точно написал позднее Майкл Лернер: «В науке, как и в любой области интеллектуальной деятельности, всегда существуют два типа специалистов – архитекторы и строители-каменщики. Каменщики выполняют очень важную работу, но их всегда бывает достаточно много, а вот Уотсон и Крик относятся к очень редкому типу архитекторов».
Френсис Крик, Джеймс Уотсон
До сих пор в этой книге «каменщики» науки практически не упоминались, за исключением мелькнувших в тексте студентов Моргана, нескольких физиков-теоретиков и пары математиков, принимавших участие в доказательстве теоремы Ферма. Книга посвящена именно великим ученым, многие из которых, например Эйнштейн, вообще не нуждались в чьей-либо помощи. В генетике дело обстоит значительно сложнее, так как для создания великой и обобщающей теории необходимо было обработать буквально горы многостраничных отчетов и материалов, полученных разными авторами в многочисленных исследовательских центрах и институтах. Например, было установлено, что в передаче наследственной информации активно участвуют молекулы ДНК (дезоксирибонуклеиновой кислоты), входящие в состав ядер всех клеток организма, причем число этих клеток очень велико (так, организм взрослого человека состоит примерно из 100 триллионов клеток). Молекула ДНК внутри клетки свернута в настолько тугую спираль, что в растянутом состоянии ее длина составляет около 2,5 метров, и общая длина всех вытянутых в единую нить ДНК-молекул одного человека вполне сопоставима с диаметром земной орбиты! Более того, для нормальной жизни и функционирования организма (включая рост, развитие, старение и т. п.) необходимо не только огромное количество клеток, но и значительное разнообразие их типов. Жизнь человека обеспечивается совместной и согласованной работой примерно 200 типов специализированных клеток (волос, крови, кожи и т. д.), имеющих самые различные функции, формы и размеры (средний размер клеток можно оценить исходя из того, что группа в 250 клеток примерно соответствует размеру точки, напечатанной в конце этого предложения). Рассказ о клетках понадобился для того, чтобы читатель оценил сложность проблемы – все эти крошечные, но весьма разнообразные по форме и функциям сложнейшие образования содержат в себе микроколичества свернутых в клубок молекул ДНК, которые необходимо было выделить и исследовать, поскольку именно в этих молекулах содержится «секрет жизни», т. е. механизм передачи наследственной информации.
Еще одним важным достижением стало обнаружение способности генов (которые до сих пор остаются во многом загадочными объектами) регулировать производство белков внутри клеток. В 1951 году знаменитый химик Лайнус Полинг доказал, что некоторые из синтезируемых белков имеют спиральную структуру, т. е. они похожи на свернутую в клубок нить, и он же первым попробовал использовать для изучения их строения хорошо известный физикам метод рентгеноструктурного анализа.
Незаслуженно забытая сейчас Розалинда Франклин, работавшая в Кинг колледже под руководством Полинга, начала систематические исследования ДНК и в 1952 году получила первые рентгеновские дифрактограммы молекулярных нитей ДНК, выделенных из тимуса (зобной железы) телят. Изображения были слишком сложны для сколь-нибудь детального анализа и очень напоминали популярные сейчас в США ультразвуковые снимки младенца в утробе матери на ранних стадиях беременности, но явно соответствовали какой-то сложной спиральной структуре. На самой первой рентгенограмме, ставшей знаменитой и даже получившей собственное название «Экспозиция 51», можно выделить крупную расплывчатую фигуру в виде грубого креста, образованную какими-то «стержнями», расположенными на равных расстояниях друг от друга. К сожалению, все попытки Розалинды Франклин согласовать полученное изображение со спиральной моделью Полинга оказались безуспешными.