KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Дмитрий Поспелов - Моделирование рассуждений. Опыт анализа мыслительных актов

Дмитрий Поспелов - Моделирование рассуждений. Опыт анализа мыслительных актов

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Дмитрий Поспелов, "Моделирование рассуждений. Опыт анализа мыслительных актов" бесплатно, без регистрации.
Перейти на страницу:

Но в любом случае остается проблема выбора продукции из готового фронта. Психологов весьма интересует вопрос, как это делают люди. К сожалению, однозначного ответа на этот вопрос пока нет. При экспериментах с программой «Логик-теоретик» ее авторы проводили сравнение работы программы с тем, как ведут себя в многочисленных возникающих по ходу доказательства случаях альтернативного выбора люди. В частности, последовательность, в которой перечислены различия в формулах, используемая для выбора преобразований в программе «Логик-теоретик», отражает экспериментально наблюдаемые приоритеты, демонстрируемые людьми.

Отсутствие точных психологических данных о способах выбора продукций из фронта людьми привело к тому, что в интеллектуальных системах стали использовать эвристические соображения, которые могут и не отражать особенности человеческих рассуждений. Так, весьма популярной стратегией выбора является принцип «стопки книг». Этот принцип описывает процедуру наиболее быстрого (в среднем) способа поиска нужной книги в стопке книг. Если каждый раз, использовав некоторую книгу, класть ее в стопку сверху, то часто используемые книги постепенно сосредоточатся в ее верхней части, а внизу будут лежать те, которые почти никогда не требовались. Если при поиске очередной нужной книги начинать просмотр стопки сверху, то она, как правило, встретится довольно скоро. Если продукции во фронте будут упорядочены по частоте их предшествующего успешного использования и активизироваться будет первая продукция этого фронта, то принцип стопки книг будет реализован.

У этого принципа есть определенный аналог в процедурах работы с информацией у человека. Если потребовать от испытуемых «не задумываться», говорить первое, что «приходит в голову», то на просьбу «Назовите поэта XIX века», как правило, будет дан ответ «Пушкин», а на просьбу «Назовите плодовое дерево» в подавляющем большинстве случаев ответ «Яблоня». Это, конечно, справедливо для испытуемых, живущих в средней полосе СССР. В других местах и социо-культурах возникнут свои приоритетные ответы. Человек как бы всегда имеет наготове, «на языке», подходящие отклики на часто встречающиеся ситуации.

Другой эвристический прием, заставляющий вспомнить герменевтические рассуждения, состоит в проверке в первую очередь продукции с самым длинным условием А. Такой прием обосновывается принципом «частное важнее общего» или «исключение важнее правил».

Но такие априорные внешние способы задания продукций, выбираемых из фронта, не всегда оправданы. В большинстве случаев тот или иной выбор зависит от текущего состояния базы знаний dt и того реального набора продукций, который образует в этот момент времени фронт. Для описания выбора при таких условиях в интеллектуальных системах часто используют так называемые метапродукции. Они вводятся в систему продукций специально для того, чтобы осуществлять приоритетный выбор тех или иных продукций из фронта в зависимости от предыстории развития процесса рассуждений, состава фронта и состояния базы знаний. Вот пример такой метапродукции, используемой в американской экспертной системе MYCIN – TEIRESIAS, диагностирующей инфекционные заболевания.

Мы специально не расшифровываем латинские термины, так как они совершенно не мешают понять суть работы метапродукции в данной экспертной системе.

Довольно часто возможность применения той или иной продукции зависит не только от того, какие именно продукции входят во фронт (как в только что приведенном примере метапродукции), но и от того, какие продукции в этот фронт не вошли. Другими словами, влияние может оказывать как «положительный», так и «отрицательный» контекст, в котором происходит выбор продукции из фронта готовых продукций.

Когда имеется выбор из нескольких продукций, то их можно выполнять последовательно, альтернативно или параллельно. Если считать, что в период реализации продукций из фронта время как бы останавливается (т.е. сохраняется неизменной база знаний со своим состоянием di), а влияния действий продукций друг на друга нейтрализуются тем, что все они работают в автономных участках памяти, не искажая информации в базе знаний, то порядок их выполнения роли не играет. Лишь после реализации всех продукций надо выбрать те из них, которые сформируют новый фронт (с учетом их возможного взаимодействия). Однако и эта задача оказывается весьма непростой и требует каких-то эвристических соображений.

Другой проблемой управления реализацией системы продукций является поиск наиболее эффективных способов проверки выполнения условий А в множестве продукций на текущем состоянии базы знаний di. При большой базе знаний эта переборная процедура весьма неэффективна. Каков аналог данного процесса у человека?

У психологов бытует термин «поле активного внимания». В это поле попадает та часть хранимой в памяти человека информации, которая обусловливает его текущие размышления или рассуждения. Как бы лучом прожектора эта информация выхватывается из огромного хранилища всевозможных знаний. Поле активного внимания скользит по памяти, не всегда подчиняясь нашему желанию. Как порой мучительно трудно выудить нужную информацию (например, вспомнить фамилию человека, лицо которого вам явно знакомо), как, отчаявшись, мы перестаем об этом думать, а оно «само, без видимых усилий» как бы всплывает из темных, неосвещенных глубин памяти.

Нечто аналогичное применяют специалисты в области баз знаний, вводя механизм окна активизации знаний. С помощью этого «окна» активизируются определенные фрагменты базы знаний. Эти фрагменты используются для проверки условий в продукциях. Для вычленения фрагментов удобно воспользоваться условиями Р, активизирующими ту область продукционной системы, которая оказывается тесно связанной с фрагментом знаний, попавшим в окно активизации знаний. Постусловия позволяют управлять перемещением окна по полю памяти, а также его размерами. Управлять «окном» могут и специальные метапродукции, подобные тем, которые используются для приоритетного выбора из фронта готовых продукций.

Мы рассматривали до сих пор лишь такие продукции, в которых В обязательно следовало при активизации продукции. Однако весьма часто продукции приходится использовать в условиях правдоподобного вывода. Собственно говоря, правдоподобные схемы рассуждений из четвертой главы уже демонстрируют продукции такого сорта. Тем не менее, приведем еще один пример, взяв его из уже упоминавшейся экспертной системы MYCIN. Поскольку в ряде случаев система не может выдать рекомендацию со стопроцентной уверенностью, то она выдает ее с оценкой правдоподобности, о которой мы говорили в предшествующей главе.

При работе с правдоподобными продукциями применяются приемы, аналогичные описанным в четвертой главе. Вместо числового значения оценки правдоподобия в таких продукциях могут встречаться нечеткие квантификаторы, как в D-силлогизмах.

Кроме обычных приемов вывода (как достоверного, так и правдоподобного) для систем продукций могут использоваться и иные способы получения результатов рассуждений. Один из них – это получающий в последнее время распространение вывод на семантической сети.

Вывод на семантической сети

Семантические сети – это наиболее общая модель представления знаний об окружающем интеллектуальную систему мире и способах действий в нем. В самом общем виде семантическая сеть есть множество вершин, каждая из которых соответствует определенному понятию, факту, явлению или процессу, а между вершинами заданы различные отношения, изображаемые дугами. Дуги снабжены именами или описаниями, задающими семантику отношений. Вершины также помечены именами или описаниями, содержащими нужную для понимания семантики вершины информацию.

Прибегнем, как всегда, к наглядному примеру. Известный роман Э. Хемингуэя «Острова в океане» начинается так:

«Дом был построен на самом высоком месте узкой косы между гаванью и открытым морем. Построен он был прочно, как корабль, и выдержал три урагана. Его защищали от солнца высокие кокосовые пальмы, пригнутые пассатами, а с океанской стороны крутой спуск вел прямо от двери к белому песчаному пляжу, который омывался Гольфстримом».

Попробуем отобразить информацию, содержащуюся в этом отрывке, в виде семантической сети. Введем систему понятий, которым для удобства присвоим имена по первым буквам соответствующего слова текста: Д – дом, СВМ – самое высокое место, К – коса, Г – гавань, ОМ – открытое море, КП – кокосовые пальмы, С – солнце, КС – крутой спуск, ДВ – дверь, П – пляж, Г – Гольфстрим. Теперь будем постепенно строить семантическую сеть, вводя нужные отношения и описания. На рис. 33, а показан фрагмент семантической сети, соответствующей первым двум фразам текста. Отношение R1 есть тернарное отношение «быть между». Двойная дужка на нашем рисунке объединяет между собой обе части этого соотношения. «Узкая» входит в описание понятия «коса». Отношение R2 есть отношение «принадлежать». Таким образом фиксируется тот факт, что СВМ принадлежит «косе». Отношение R3 интерпретируется как «находиться на», а текст около вершины, соответствующей понятию «дом», принадлежит описанию этой вершины. На рис. 33, б показан фрагмент сети, соответствующий остальной части текста. Отношения, использованные здесь, интерпретируются следующим образом: R4 – «защищать от», R5 – «соединять», R6 – «омывать». Полное описание текста в виде семантической сети получится, если в построенных двух фрагментах объединить вершины, соответствующие понятию «дом».

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*