KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Марк Перельман - Наблюдения и озарения или Как физики выявляют законы природы

Марк Перельман - Наблюдения и озарения или Как физики выявляют законы природы

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Марк Перельман, "Наблюдения и озарения или Как физики выявляют законы природы" бесплатно, без регистрации.
Перейти на страницу:

Якова Ильича Френкеля (1894–1952) можно назвать первопроходцем во многих областях теоретической физики. Он первым установил основные положения электронной теории металлов, ввел понятия дефектов в кристаллах и идею квазичастиц-экситонов, первым рассмотрел явления туннелирования на границах металл — полупроводник, объяснил природу ферромагнетизма, построил теорию жидкого состояния. Ему принадлежат также пионерские работы по гео-, астро- и биофизике.

Но теория ядра на этом, конечно, не закончилась: нужно было объяснить, почему одни ядра устойчивы, а другие распадаются, и выяснить, как именно происходит такой распад. Но помимо того, ядра обладают и электромагнитной структурой, а она должна быть в каком-то смысле схожей с системой атомных уровней, только излучение ядер происходит в гамма-диапазоне, т. е. обладает гораздо более высокой энергией. Ю. Вигнер и Дж. фон Нейман применили теорию групп, чтобы связать эти уровни ядра с наблюдаемым его поведением: теория групп и следующие из нее принципы симметрий определяют, какие характеристики частиц не могут изменяться в ходе ядерных реакций. Например, принципы симметрии и требования инвариантности могут помочь предсказать, какие ядерные реакции возможны, а какие нет.

Эта работа оказалась особенно полезной при попытке объяснить существование того, что Вигнер назвал магическими числами.

Еще в 1933 г. В. Эльзассер (1904–1991) заметил, что атомы с некоторыми определенными числами протонов или нейтронов более устойчивы, т. е. реже бывают радиоактивными, чем другие ядра. Поэтому в любой земной породе атомов с такими ядрами оказывается больше, чем должно было быть при равномерном распределении: стабильные ядра остаются и накапливаются, тогда как остальные ядра распадаются.

Оказалось, что в ядрах элементов, распространенность которых в природе почему-то намного больше, чем у их ближайших соседей по таблице элементов и изотопов, число протонов либо число нейтронов чаще равно одному из чисел: 2, 8, 20, 28, 50, 82, 126 — эти числа и были названы «магическими». Загадку их существования разрешили независимо Мария Гепперт-Майер (1906–1972) в США и Ханс Йенсен (1907–1973) в Германии, удостоенные за это достижение Нобелевской премии 1963 г., которую они разделили с Ю. Вигнером.

Они понимали, что эта проблема в чем-то сходна с проблемой стабильности атомов, у которых имеется разное число электронов на верхней оболочке. И действительно, если посмотреть на таблицу элементов Менделеева — Бора, то элементы правого столбца — инертные газы — химически наиболее устойчивы, они практически не вступают в соединения с другими атомами (в последние годы, правда, такие соединения научились получать, но только при экстремальных внешних воздействиях). Это их свойство объясняется тем, что соответствующие электронные подуровни в оболочках — у гелия, у неона, у аргона и т. д. — полностью заполнены: из них трудно вырвать электрон, чтобы получить положительный ион, так же как трудно добавить электрон, начать формирование нового уровня (или даже оболочки) для получения отрицательного иона. Так что числа 2, 8, 18…. в атоме тоже можно было бы назвать «магическими», только для электронов.

Но ядро сильно отличается от атома: в атоме основную роль играет центральная электрическая сила притяжения между протонами в ядре и электронами. Электроны находятся на относительно больших расстояниях друг от друга, и их взаимное отталкивание слабо, поэтому энергия одного электрона мало зависит от положения других, можно принять, что он вращается в некотором общем поле. Однако ядерные силы между нуклонами действуют на малых расстояниях, и энергия одной частицы сильно зависит от положения других внутриядерных частиц — здесь нет общего центра притяжения. Поэтому физики-теоретики на раннем этапе исследования заключили, что распределение по квантовым числам (оно диктуется так называемой спин-орбитальной связью), на основе которого построена теория периодической системы элементов, здесь должна быть малоэффективна.

Отметим, что особенно стабильны, конечно, ядра, у которых и числа протонов, и числа нейтронов — магические, такие ядра называют дважды магическими: гелий-4, кислород-16, один из изотопов свинца. Есть надежда, что какие-то из далеких трансурановых ядер тоже окажутся магическими, и поэтому их поиски усердно продолжаются, хотя пока что чем более тяжелые атомы, далее урана, удавалось получить, тем короче было время их жизни. (Оболочечная модель оставила в стороне многие особенности ядер, поэтому их исследование далеко еще не закончено, но представляется, что в этой области не было уже столь ярких событий.)

Как писал позже Йенсен: «К счастью, я был не слишком хорошо образован, не был знаком с этими взглядами и не помнил особенно крепко о старых возражениях против сильной спин-орбитальной связи». И хотя уже его начальные подсчеты давали неплохие результаты, журнал, куда он послал первую заметку, отверг ее: «Это не физика, а игра с числами».

В это же время Мария Гепперт-Майер также упорно билась над решением проблемы структуры ядра. В начале своей работы она обнаружила два больших магических числа: 50 и 82. Затем, рассматривая экспериментальные данные, она нашла еще пять магических чисел, но объяснить их существование и свойства не могла. Решающий момент наступил в 1948 г., когда великий Энрико Ферми спросил у нее во время обсуждения: «Существуют ли в ядрах какие-либо признаки спин-орбитальной связи?»

И ее как бы озарило: сразу же поняв, что именно спин-орбитальная связь дает ключ к проблеме, она в тот же вечер сумела объяснить ядерные магические числа.

Гепперт-Майер показала, что атомное ядро по своему строению напоминает луковицу: оно состоит из слоев, содержащих протоны и нейтроны, которые обращаются и вокруг друг друга, и по орбите, как пары, вальсирующие на балу; ядра стабильны, если оболочки протонов или нейтронов заполнены. И поэтому, хотя ядерные магические числа отличаются от магических чисел для атомных электронов, все же, некоторая аналогия между ними существует.

Статьи обоих: М. Гепперт-Майер и X. Йенсена с соавторами — вышли почти одновременно в одном и том же журнале (1948). Так была создана оболочечная модель ядра, полностью изложенная в их совместной книге 1955 г.

Мария Гепперт и ее муж, известный физико-химик Джозеф Э. Майер, написали совместно курс статистической механики. Дж. Э. Майер впервые ввел диаграммные методы рассмотрения взаимодействия частиц, развитые затем Р. Фейнманом. Супруги Майер бежали из Европы от фашизма, и в начале 1940-х гг. они вместе с супругами Ферми даже обсуждали планы переселения на какой-нибудь далекий остров.

б. Эффект Мессбауэра

Взаимодействие нуклонов в ядре, как и электронов в атоме, должно приводить к распределению их по уровням, установленным Ю. Вигнером, а также к расщеплению этих уровней, появлению тонкой структуры электромагнитных уровней. А наличие уровней означает, как и в атоме, что ядра могут излучать и поглощать фотоны определенных энергий. Однако уровни эти, в отличие от электронных, изучаемых методами флюоресценции, очень тонкие, т. е. требуют невероятно большой точности при наблюдении резонансов, и перспективы их измерения казались невероятно далекими.

Явление флюоресценции (оно было открыто на минерале флюорите) состоит в том, что некоторые газы, жидкости и твердые тела поглощают видимый свет и немедленно вновь его излучают. В некоторых случаях испускаемое излучение обладает такими же энергией, длиной волны и частотой, что и у поглощаемого (резонансная флюоресценция). Частоты резонансной флюоресценции точно соответствуют энергетическим уровням атома, и поэтому их анализ помогает выявить атомарную структуру веществ. Это же явление наблюдается в рентгеновском диапазоне, что дало важнейшую информацию о строении атомов.

Испускание или поглощение фотона протекает с сохранением как энергии, так и импульса, но при испускании фотона сам атом испытывает отдачу и поэтому отбирает у фотона часть его энергии, тем меньшую, чем больше масса атома. В случае видимого света энергия фотонов — порядка 1–3 эВ, и эффектом атомной отдачи можно пренебречь. Но у фотонов гамма-излучения ядер энергия — от 10 тыс. до 1 млн эВ, и отдача становится существенной: когда атомное ядро испускает фотон, то потери на отдачу заметно уменьшают энергию фотона, и он уже не попадает в резонанс со следующим ядром (не может быть поглощенным). Поэтому резонансная флюоресценция — при которой испускаемый и поглощаемый фотоны должны обладать равными энергиями — у гамма-лучей не наблюдалась.

Однако Рудольф Л. Мессбауэр (р. 1929, Нобелевская премия 1961 г.) смог придумать способ достижения резонансной флюоресценции ядер.

Появление первых двух статей Мессбауэра в 1958 г. вызывало смех у всех читателей: непредставимая и неописуемая точность, бабушкин патефон в ядерной физике, где привыкли к километровым ускорителям и многомиллионной стоимости экспериментов, — ну, конечно, это первоапрельская шутка и ничего больше. Затем наступила эпоха отрезвления, перешедшая во всеобщий ажиотаж: практически все лаборатории мира в бешеном темпе повторяли и видоизменяли опыты Мессбауэра, журналы так были заполнены статьями на эти темы, что скоро объявили об отказе принимать новые…

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*