KnigaRead.com/

Э Розенталь - Геометрия, динамика, вселенная

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Э Розенталь, "Геометрия, динамика, вселенная" бесплатно, без регистрации.
Перейти на страницу:

Подведем предварительные итоги.

Структура Метагалактики устойчива при данных значениях фундаментальных постоянных и неустойчива при иных.

Некоторые из этих постоянных (хотя речь шла об ALPHA| и

g m|, но в действительности число примеров можно умножить) e являются огромными флюктуациями в ряду подобных себе величин. Физические законы в Метагалактике обуславливают устойчивость состояний, а некоторые вариации законов разрушают устойчивость.

В 1937 г. американские физики К.Андерсон и С.Нидермайер открыли в космических лучах мюон. На первых порах к этому открытию отнеслись с недоверием. Было просто неясно, зачем природе нужна частица, копирующая электрон во всех свойствах, кроме массы (в первое время после его открытия мюон называли тяжелым электроном). Сомнения в методической достоверности опытов американских физиков были вскоре устранены, однако поставленный вопрос остался. ЗАчем нужен электрон - ясно; но тяжелый электрон - мюон - явное излишество природы. Этот вопрос с течением времени не только не разрешился, несмотря на многочисленные попытки объяснить место мюона в ряду элементарных частиц, но даже усложнился. В 1977 г. был открыт еще более тяжелый аналог электрона TAU-лептон. Кроме того, были открыты два типа нейтрино (электронное V| и мюонное V|). Никто не сомневался и в

e ю существовании третьего типа нейтрино V||| - партнера

TAU TAU-лептона. В современной трактовке вопрос, зачем нужен мюон, трансформировался в проблему: почему существует три (e, NU, TAU) поколения лептонов?

В рамках чисто квантовых подходов не видно никаких путей решения этой проблемы. Однако сочетание теории большого объединения с принципом целесообразности позволяет ответить на поставленный вопрос.

Чтобы понять дальнейший ход рассуждений, начнем несколько издалека. Существование основных устойчивых связанных состояний базируется на барионной асимметрии Метагалактики: существование протонов и электронов при почти полном отсутствии антипротонов и позитронов. Действительно, если бы концентрации частиц и античастиц в Метагалактике были бы равными, то произошла бы их аннигиляция, в результате которой остались бы фотоны и нейтрино, неспособные образовывать связанные состояния.

Барионная асимметрия обуславливает основные характерные черты Метагалактики.

По всеобщему убеждению, для возникновения барионной асимметрии необходимы два условия: распад протона и так называемое СР-нарушение, когда для некоторых каналов распада элементарных частиц нарушается равенство вероятностей распада частиц и античастиц.

В рамках теории большого объединения распад протона практически неизбежен, однако число поколений лептонов, вообще говоря, произвольно. Но существует конкретная, хотя и не единственная, схема большого объединения Кобаяши-Маскава, которая предсказывает СР-нарушение при условии, что число поколений лептонов не меньше трех. Поэтому есть все основания полагать, что в нашей Метагалактике реализуется одна из возможных схем большого объединения - модель Кобаяши-Маскава, в которой данное число поколений лептонов играет фундаментальную роль ("целесообразно").

Другая важнейшая не решенная в границах теории проблема - так называемая иерархия масс. Эта проблема сводится к вопросу: почему отношение M||| / m| ~ 10**2, а m| / m| ~

W,Z p X p

+- 0 10**15 (m||| - масса W||- , Z|-бозонов, m| - масса бозона,

W,Z X определяющего большое объединение)? Как указывалось ранее, массы почти всех частиц группируются вокруг значения m|, а +- 0 p W||- , Z|-бозоны значительно отступают от этого правила.

И эта проблема, которая не решается в рамках существующих теорий, легко интерпретируется на основе принципа целесообразности.

Мы ограничимся для краткости объяснением огромного значения отношения m| / m| ~ 10**15. Аналогичные, но более

X p сложные рассуждения можно провести и для отношения m||| / m|. Мы сформулируем два аргумента в пользу того, что W,Z p отношение m| / m| должно быть очень большим.

X p

1. В соответствии с квантовой теорией поля значение постоянных взаимодействий ALPHA должно зависеть от передаваемого во время взаимодействия импульса q или массы m, поэтому величины ALPHA называют бегущими константами. Приводимые обычно значения констант ALPHA, и в частности пределы их изменения, относятся к низкоэнергетической области (q, m ~< m|). При m m| константы ALPHA

p p изменяются, и это изменение можно с большой точностью вычислить на основе современных теорий. Основные надежды на построение большого объединения базируются на том, что все три бегущие константы, характеризующие сильное и электрослабое взаимодействия, сходятся в одной точке при m| ~ 10**15 (рис.10)`. Если бы такое пересечение X отсутствовало, то большое объединение было бы построить трудно, а может быть, и невозможно. Масса m| соответствует

X точке пересечения бегущих констант ALPHA. Уменьшить массы X-бозона m| при сохранении условия пересечения констант

X ALPHA| (m) , ALPHA| (m) и ALPHA| (m) можно единственным

e w s способом: изменить эти константы в низкоэнергетическом пределе m ~< m| . А это сделать невозможно в силу принципа целесообразности (см. только что рассмотренную таблицу).

-----------------------------------------------------------` Вследствие структуры электрослабого взаимодействия (оно

+ передается четырьмя частицами: фотоном и W||- ,

0 Z|-бозонами) его следует характеризовать двумя

1 2 константами: ALPHA||| и ALPHA|||. На рис.10 представлены

we we зависимости обеих констант от значения m. -----------------------------------------------------------

===РИС.10

2. Второй аргумент связан с предполагаемым распадом протона. Вычисления, основанные на квантовой механике, показывают, что время жизни t| протона пропорционально

p m|**4. Поэтому при уменьшении массы m| на 4-5 порядков время X t| уменьшится на 15-20 порядков и сравнится с временем t| p u существования Метагалактики. Подобная гипотетическая возможность привела бы практически к полному распаду вещества. Оба аргумента показывают, что масса m| должна быть

X очень большой.

Далее мы затронем вопрос о причинах доминантности калибровочной инвариантности в нашем мире. Можно построить множество калибровочно неинвариантных теорий, которые не реализуются в природе. Почему же существующие теории основываются на калибровочной инвариантности?

Ответ на этот вопрос можно дать из "целесообразности" калибровочных теорий. В калибровочных теориях сохраняется заряд, а закон сохранения заряда - основа стабильности связанных состояний.

В заключение отметим еще один важный факт. Квантовые числа элементарных частиц - спин, изотопический спин и даже странность, необходимы для существования многообразия устойчивых связанных состояний.

Для простоты ограничимся анализом роли спина. Существование у элементарных частиц спина с полуцелым значением (HP/2; 3/2 HP) запрещает фермионам находиться в тождественных состояниях (принцип Паули). А принцип Паули лежит в основе периодической системы элементов. Если бы спин (а следовательно, и принцип Паули) отсутствовали, то все орбитальные электроны перешли бы на основную орбиту и вместо всего многоцветия периодической системы существовали бы только водородоподобные элементы.

На этом, пожалуй, можно окончить рассмотрение приложений принципа целесообразности и перейти к рассмотрению антропного принципа.

В физическом плане Земля - заурядная планета. Как известно, это положение в течение более полутора тысяч лет господства геоцентрической системы Птолемея полагалось научной и теологической ересью.

После победы учения Коперника в полемическом пылу упустили одно обстоятельство. Да, действительно, ЗЕмля как физическое тело ничем не выделена. Однако эта планета единственная обитель цивилизации. А возникновение носителя цивилизации - человека вовсе не тривиально, а требует сочетания определенных конкретных физических условий. Это требование положено в основу антропного принципа.

Мысли о связи между возникновением цивилизации и физическими законами начали высказываться (насколько известно автору) в 50-х годах. Например, А.Л.Зельманов утверждал, что во Вселенной возможно существование больших областей, где физические процессы протекают без свидетелей.

Однако, по нашему мнению, антропный принцип как отражение определенных физических закономерностей получил права гражданства лишь после количественной интерпретации некоторых физических фактов. Этот прогресс связан с именами выдающихся английских и американских физиков и астрономов: Р.Дикке, С.Хокинса, М.Риса, Б.Картера, Д.Барроу.

Наиболее лаконичное определение антропного принципа принадлежит Картеру, изменившему известный декартовский афоризм: "Я мыслю, следовательно, существую" (Cogito, ergo sum) на утверждение: "Я мыслю, следовательно, мир такой, какой он есть" (Cogito, ergo mundus talis est).

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*