Александр Гордон - Диалоги (август 2003 г.)
А.Г. Но, кроме того, рис ведь требует ещё большего оводнения. Вода забирается…
В.Ф. Да, это правильно. Но мы куда её сбрасываем? Туда же. Там ещё дренажные воды, сливы с полей идут, которые содержат пестициды, они содержат ещё и вымываемые биогенные вещества. Поэтому здесь палка о двух концах. С одной стороны, стимулируется процесс первичного включения фотосинтеза, а с другой стороны, получается как бы накопитель и привносятся как раз пестициды, которые, нас уверяют, теперь всё меньше и меньше якобы потребляются. Но в общем, практика говорит немножко об обратном.
А.Г. А кто-то из эндемичных видов ещё остался в Арале, или уже всё, там совсем мёртвое море?
В.Ф. Нет, в Амударье осталось несколько эндемичных видов. Сейчас как раз ихтиологи спорят: на Балхаше как будто бы тоже есть такие виды, но генетики должны показать – это оставшиеся старые популяции или это возникшие параллельно популяции, и тогда это не имеет смысла. Тогда ничего не осталось. Это как раз генетика популяций рыб, это ихтиологи должны решить.
А.Г. Интродукция новых видов: если будет достигнута солёность около 30 промилле, то это могут быть и океанические рыбы?
В.Х. Одно время в Хаджибее была солёность около 30 промилле. И туда для акклиматизации привозились дальневосточные креветки. Дальше опыт был прекращён, но довольно долгое время эксперимент проходил успешно. Фактически, создание новых…
Перенос излучения
Участник:
Юрий Николаевич Барабаненков – доктор физико-математических наук
Александр Гордон: Для меня «фотоника» – это неологизм. В моей жизни впервые встречается это слово, хотя слово «фотон» мне известно и я понимаю, что это производное. Но всё-таки чем занимается эта наука?
Юрий Барабаненков: Вы знаете, мне бы не хотелось начинать с фотоники, потому что эту тему я оставляю для завершения разговора.
А.Г. Хорошо, начните с того, с чего вам удобно.
Ю.Б. Я хотел бы начать с того, что тема нашей беседы формулируется как «Перенос излучения в рассеивающих средах». И в рамках этой темы я хотел бы обсудить следующие 4 вопроса. Первый вопрос. В чём заключаются основные представления о переносе излучения в рассеивающих средах и как эти представления изменялись с годами по мере изучения новых явлений, новых сред. Первый вопрос. Он касается феноменологического и микроскопического подходов при рассмотрении вопросов переноса излучения в рассеивающей среде. Третий вопрос. Как изменились феноменологические представления о переносе излучения в рассеивающих средах после предсказания явления локализации излучения в рассеивающих средах. И четвёртый вопрос касается того, насколько феноменологические представления в состоянии оказать какую-то заметную помощь при исследовании оптических свойств так называемых фотонных кристаллов.
Замечу, что большой интерес к явлениям переноса излучения в рассеивающих средах связан с тем, что эти явления весьма часто встречаются в природе. Поэтому такие области науки и техники как связь, зондирование сред, обнаружение объектов, передача изображений, биооптика, молекулярная оптика постоянно сталкиваются с проблемами распространения и рассеивания электромагнитного излучения, радиоизлучения, СВЧ и оптических частот в средах со случайными неоднородностями, в рассеивающих средах. Примерами таких сред могут быть турбулентная атмосфера и турбулентный океан. Это такие геофизические явления как ураган, дождь, град, снег, как песчаные бури. Это такие объекты как лесные покровы, листья и такие объекты как фотографические слои, люминесцентные экраны, бумага, биологические объекты с клетками и так далее. Все это примеры переноса электромагнитного излучения в рассеивающих средах. Можно было бы ещё назвать такие примеры как перенос акустического излучения в турбулентной атмосфере или же перенос тепловых нейтронов в жидкости и другие. Примеров очень много.
При рассмотрении вопросов распространения излучения в рассеивающих средах применяются два подхода: феноменологический и микроскопический подходы. Феноменологический подход более старый. Он исходит непосредственно от самого явления («феноменон» – явление и «логос» – просто логика). В этом случае никаких особенных гипотез о строении рассеивающей среды не делается, и главный упор делается на соблюдении закона сохранения энергии, который применяется к узким по направлению распространения лучам. Вот, собственно говоря, на этой первой картинке, которая показывается, и иллюстрируются основные представления фенологического подхода.
Согласно этому подходу, рассеивающая среда рассматривается как набор эффективных рассеивающих неоднородностей или элементарных объёмов, которые как-то разбросаны в пространстве. На каждой такой неоднородности излучение испытывает элементарный акт рассеивания с каким-то угловым распределением и далее происходит свободный пробег этого излучения до следующей неоднородности, на которой оно опять рассеивается. Вот, собственно говоря, основа феноменологических представлений. В основе аналитических представлений здесь лежит так называемое «уравнение переноса», которое формулирует энергетический баланс при таком рассеянии излучения и где главная величина – это лучевая интенсивность. Это поток энергии в заданные точки и в заданном направлении.
Микроскопический же подход исходит уже из некоторой модели рассеивающей среды и пользуется волновыми уравнениями. Кроме того, при микроскопическом подходе учитывается, что частицы среды случайно распределены в пространстве, то есть их распределение флуктуирует. И, кроме того, само волновое поле при этом тоже становится флюктуирующим.
Феноменологические представления появились в конце позапрошлого столетия и начале прошлого в трудах Хвольсона, Шварцшильда и Шустера при изучении распространения света в молочных стёклах, солнечной атмосфере и туманной атмосфере Земли. Далее эти представления были усовершенствованы в работах Соболева, Чандрасекара, Розенберга. Усовершенствованы по форме, но не по содержанию – для учёта эффектов поляризации излучения. И вот в таком виде эти феноменологические представления успешно разрабатывались до 60-х годов прошлого столетия, после чего возникла необходимость эти представления критически переосмыслить.
Такая необходимость возникла в связи с предсказанием явления локализации излучения, которое с феноменологическими представлениями не согласовывалось. Однако для большинства задач эти представления успешно применялись, и было установлено существование трех основных режимов распространения излучения через рассеивающую среду: баллистический, промежуточный и диффузионный режимы. При баллистическом режиме излучение в основном идёт вперёд и несколько ослабевает вследствие того, что отдельные лучи выбывают из первоначального потока вследствие рассеяния. Этот баллистический режим действует где-то около поверхности среды, на которую падает излучение, или недалеко от источника. При промежуточном режиме уже произошло заметное число актов рассеяния на отдельных неоднородностях, и траектория движения излучения представляет из себя некую ломаную, узлы которой расположены на этих неоднородностях. И наконец, диффузионный режим действует в глубоких слоях рассеивающей среды, когда произошло много актов рассеяния. В области диффузионного режима поле излучения является почти изотропным.
Конечно, самым сложным является промежуточный режим. Я буду благодарен, если покажут картинку №2. Для исследования переноса излучения в области промежуточного режима до 60-х годов прошлого столетия было разработано много эффективных подходов, но особенно интересным оказался подход, предложенный Амбарцумяном в 1943 году. Этот подход получил название «метод сложения слоёв». Согласно этому подходу, рассеивающая среда мысленно расслаивалась на параллельные срезы с небольшими зазорами между ними. И далее рассматривались потоки излучения в зазорах между срезами, а также отражённые всей средой излучения и прошедшие через весь слой среды излучения. Важнейшим достоинством метода сложения слоёв Амбарцумяна является то, что он позволяет рассчитывать коэффициент отражения последовательно, начиная от нижнего среза и передвигаясь к верхнему срезу. То есть при этом коэффициент отражения рассчитывается примерно так же, как рассчитывается траектория движения частиц в заданном силовом поле, согласно механике Ньютона. В этом проявляется некоторый вариант так называемой оптико-механической аналогии – аналогии между оптикой и механикой.
Конечно, это изобретение Амбарцумяна было замечательно в том смысле, что, с одной стороны, оно позволяло в рамках феноменологических представлений получать точные результаты, а с другой стороны, обладало аналогией с механикой Ньютона. Можно было коэффициент отражения среды рассчитывать так же, как рассчитывается движение частицы в заданном силовом поле.