KnigaRead.com/

Стивен Вайнберг - Первые три минуты

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Стивен Вайнберг, "Первые три минуты" бесплатно, без регистрации.
Перейти на страницу:

Есть еще один остаток ранней Вселенной, находящийся в настоящее время всюду вокруг нас, который, по-видимому, все еще невозможно наблюдать. Мы видели в третьем кадре, что нейтрино начали вести себя как свободные частицы с того момента, как космическая температура упала ниже примерно 10 миллиардов градусов Кельвина. В течение этого времени длины волн нейтрино просто растягивались пропорционально размеру Вселенной; количество нейтрино и их распределение по энергии оставались, следовательно, таким же, какими они были в тепловом равновесии, но с температурой, падавшей обратно пропорционально размеру Вселенной. С нейтрино произошло почти то же самое, что случилось за это время с фотонами, даже несмотря на то, что фотоны оставались в тепловом равновесии значительно дольше, чем нейтрино. Так что современная температура нейтрино должна быть приблизительно такой же, как и современная температура фотонов. Поэтому должно существовать что-то около миллиарда нейтрино и антинейтрино на каждую ядерную частицу во Вселенной.

Все это можно рассмотреть значительно более точно. Чуть позднее того момента, как Вселенная стала прозрачной для нейтрино, электроны и позитроны начали аннигилировать, нагревая фотоны, но не нейтрино. Вследствие этого нынешняя температура нейтрино должна быть несколько меньше температуры фотонов. Довольно легко подсчитать, что температура нейтрино меньше температуры фотонов на множитель, равный кубическому корню из 4/11, или на 71,38 процента; следовательно, нейтрино и антинейтрино вносят вклад в энергию Вселенной, равный 45,42 процента энергии фотонов (см. математическое дополнение 6). Хотя я и не говорил об этом прямо, когда обсуждал промежутки времени космического расширения, я учитывал эту добавочную плотность энергии нейтрино.

Наиболее драматическим из возможных подтверждений стандартной модели ранней Вселенной было бы детектирование этого фона нейтрино. Мы имеем четкое предсказание о его температуре; она составляет 71,38 процента температуры фотонов, т. е. около 2 К. Единственной реальной теоретической неопределенностью в количестве и энергетическом распределении нейтрино остается вопрос, так ли мала плотность лептонного числа, как мы предположили. (Напомним, что лептонное число есть число нейтрино и других лептонов минус число антинейтрино и других антилептонов.) Если плотность лептонного числа так же мала, как и плотность барионного числа, тогда число нейтрино должно равняться числу антинейтрино с точностью до одной части на миллиард. В то же время, если плотность лептонного числа сравнима с плотностью числа фотонов, тогда должно быть «вырождение», т. е. заметный избыток нейтрино (или антинейтрино) и недостаток антинейтрино (или нейтрино). Такое вырождение должно было повлиять на сдвиг нейтрон-протонного баланса в первые три минуты и, следовательно, изменило бы количество космологически образованных гелия и дейтерия. Наблюдение фона космических нейтрино и антинейтрино с температурой 2 К немедленно разрешило бы вопрос, имеет ли Вселенная большое лептонное число, и, что значительно более важно, доказало бы, что стандартная модель ранней Вселенной действительно правильна.

Увы, нейтрино так слабо взаимодействуют с обычным веществом, что никто еще не смог предложить какой-либо способ наблюдения двухградусного фона космических нейтрино. Это поистине мучительная проблема: на каждую ядерную частицу имеется около миллиарда нейтрино и антинейтрино и до сих пор никто не знает, как их обнаружить! Возможно, когда-нибудь кто-нибудь сможет.

Следя за этим расчетом первых трех минут, читатель мог ощутить с моей стороны оттенок чрезмерной научной уверенности. Может быть, он и прав. Однако я не верю в то, что наука всегда развивается наилучшим образом, если оставаться полностью непредубежденным. Часто необходимо забыть чьи-то сомнения и следовать за выводами из каких-то предположений, куда бы они ни привели, — великое искусство не в том, чтобы быть свободным от теоретических предубеждений, а в том, чтобы иметь правильные теоретические предубеждения. И, как всегда, проверка любой предварительной теоретической концепции — в том, к чему она приводит. Стандартная модель ранней Вселенной достигла некоторых успехов и обеспечивает последовательную теоретическую основу будущих экспериментальных программ. Это не значит, что она верна, но это значит, что она заслуживает того, чтобы отнестись к ней серьезно.

Тем не менее есть все-таки одна большая неопределенность, темным облаком висящая над стандартной моделью. В основе всех вычислений, описанных в этой главе, лежит Космологический Принцип (предположение о том, что Вселенная однородна и изотропна). Под словом «однородна» мы понимаем то, что Вселенная выглядит одинаково для любого наблюдателя, увлекаемого общим расширением Вселенной, где бы этот наблюдатель ни находился; под словом «изотропна» мы подразумеваем, что Вселенная выглядит для такого наблюдателя одинаково во всех направлениях.) Из прямых наблюдений мы знаем, что фон космического излучения в высокой степени изотропен, и из этого мы заключаем, что Вселенная была весьма изотропна и однородна всегда, с тех пор как излучение вышло из равновесия с веществом при температуре около 3000 К. Однако у нас нет свидетельств того, что Космологический Принцип был справедлив до этого момента.

Возможно, что Вселенная изначально была в высокой степени неоднородной и анизотропной, но постепенно сгладилась благодаря силам трения. Такая «перемешивающаяся» модель пропагандировалась, в частности, Чарльзом Мизнером из Мэрилендского университета. Возможно даже, что тепло, порожденное в процессе гомогенизации и изотропизации Вселенной силами трения, ответственно за теперешнее колоссальное (миллиард к одному) отношение фотонов к ядерным частицам. Однако, насколько мне известно, никто не может сказать, почему Вселенная должна иметь какую-то начальную степень неоднородности или анизотропии, и никто не знает, как рассчитать образованное при ее сглаживании тепло[46].

По моему мнению, правильное отношение к подобным неопределенностям не в том, чтобы (как, может быть, хотят некоторые космологи) отдать на слом стандартную модель, а скорее в том, чтобы воспринимать ее очень серьезно и тщательно разрабатывать ее следствия, даже лишь в надежде выявить противоречия с наблюдениями. Ведь неясно даже, могли ли большая начальная анизотропия и неоднородность сильно повлиять на рассказанную в этой главе историю. Могло быть так, что Вселенная сгладилась в первые несколько секунд; в этом случае космологическое образование гелия и дейтерия может быть рассчитано так, будто Космологический Принцип был всегда верен. Даже если анизотропия и неоднородность Вселенной продолжали сохраняться после эры синтеза гелия, образование гелия и дейтерия в любом однородно расширяющемся комке зависело бы только от скорости расширения внутри этого комка и не должно было слишком отличаться от рассчитанного по стандартной модели. Могло быть даже и так, что вся Вселенная, доступная нашему взору, обращенному к моменту нуклеосинтеза, была не что иное, как однородный и изотропный комок внутри неоднородной и анизотропной Вселенной.

Неопределенность, связанная с Космологическим Принципом, становится действительно существенной, когда мы обращаемся назад, к самому началу, или вперед, к концу Вселенной. Я буду полагаться на этот Принцип в большей части двух последних глав. Однако всегда следует допускать, что наши простые космологические модели могут описывать лишь малую часть Вселенной или ограниченный отрезок ее истории.

VI. ИСТОРИЧЕСКОЕ ОТСТУПЛЕНИЕ

Давайте оставим на время историю ранней Вселенной и рассмотрим историю последних трех десятилетий космологических исследований. В особенности я хочу попытаться разрешить здесь историческую проблему, которая представляется мне в равной степени загадочной и поразительной. Обнаружение в 1965 году фона космического микроволнового излучения было одним из самых важных научных открытий двадцатого века. Почему оно произошло случайно? Или, другими словами, почему не было систематических поисков этого излучения задолго до 1965 года?

Как мы видели в последней главе, измеренные современные значения температуры фона излучения и плотности массы Вселенной позволяют нам предсказать космическую распространенность легких элементов, находящуюся, как представляется, в хорошем согласии с наблюдениями. Задолго до 1965 года можно было привести обратное вычисление, предсказать фон космического излучения и начать его поиски. Из наблюдаемой в настоящее время космической распространенности гелия (около 20–30 процентов) и водорода (70–80 процентов), можно было вывести, что нуклеосинтез должен был начаться в то время, когда нейтронная фракция ядерных частиц упала до 10–15 процентов. (Напомним, что нынешняя распространенность гелия по массе есть в точности удвоенное значение нейтронной фракции в момент нуклеосинтеза.) Такое значение нейтронной фракции было достигнуто, когда Вселенная имела температуру около одного миллиарда градусов Кельвина (109 К). Условие, что нуклеосинтез начался в этот момент, позволяет сделать грубую оценку плотности ядерных частиц при температуре 109 К, в то время как плотность фотонов при такой температуре можно вычислить из известных свойств излучения черного тела. Следовательно, для этого момента было бы также известно отношение числа фотонов и ядерных частиц. Но это отношение не меняется, так что оно стало бы столь же хорошо известно и для настоящего времени. Из наблюдений теперешней плотности ядерных частиц можно было бы, следовательно, предсказать теперешнюю плотность фотонов и прийти к выводу о существовании фона космического микроволнового излучения с температурой где-то в интервале от 1 до 10 К. Если бы история науки была так же проста и прямолинейна, как история Вселенной, то кто-нибудь, рассуждая указанным способом, должен был бы сделать такое предсказание в 40-х или 50-х годах, и оно побудило бы радиоастрономов искать фон излучения. Но случилось не совсем так.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*