KnigaRead.com/

Алексей Шилейко - Информация или интуиция?

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Алексей Шилейко, "Информация или интуиция?" бесплатно, без регистрации.
Перейти на страницу:

Более сложная модификация того же прибора показана на следующем рисунке. Здесь все то же самое, но щелей в маске не одна, а две, и расположены они параллельно друг другу. Электроны проявляют здесь свою волновую природу, и электронные волны, прошедшие сквозь щели, складываются между собой по ту сторону маски. В результате на экране образуется явно выраженная интерференционная картина, представляющая собой чередование темных и светлых полос (рисунок 3). Кроме того, на рисунке (страница 4) показаны кривые, выражающие зависимость интенсивности свечения экрана от расстояния вдоль оси х, проведенной в направлении, перпендикулярном направлению черных и белых полос.

ЧЕРЕЗ КАКУЮ ЩЕЛЬ ПРОШЕЛ ЭЛЕКТРОН!

Со дня, когда подобный опыт был поставлен впервые, и до сих пор ученых интересует все тот же вопрос: можно ли узнать, через какую из двух щелей прошел этот самый единственный электрон?Поскольку в формулировке этого вопроса присутствует слово «узнать», мы также не можем остаться равнодушными. Усложним еще более конструкцию приора, снабдив его источником света, расположенным точно посередине между двумя щелями и двумя детекторами, способными регистрировать каждый отдельным фотон. Будем предполагать, что, если какой-либо электрон пролетит через верхнюю щель, летящий ему навстречу очередной фотон, излученный источником света, от разится от него и попадет в верхний детектор, которым и зарегистрирует его. Мы будем знать, что через верхнюю щель пролетел электрон. Наоборот, если электрон пролетит через нижнюю щель, отраженный от него фотон попадет в нижний детектор. Таким образом, по сигналам детекторов мы, казалось бы, можем точно знать, через какую именно щель пролетел электрон.К сожалению, на самом деле все обстоит не так просто. Многочисленные опыты, в частности, с конструированием различных микроскопов, неоспоримо свидетельствуют о следующем. Можно «увидеть» предмет в том и только в том случае, если, он «освещается» излучением, длина волны которого во всяком случае не больше, чем размеры предмета. При этом совершенно не важно, освещается ли предмет видимым светом, ультрафиолетовым излучением или потоком любых микрочастиц, имеющих, как мы совсем недавно имели возможность напомнить читателю, волновую природу. Не важно также и то, что имеется в виду под словом «увидеть»: увидеть глазом или зарегистрировать детектором.

Наконец, уместно напомнить здесь, что Длина волны любого излучения обратно пропорциональна энергии его квантов: чем выше энергия, тем короче длина волны, причем в качестве коэффициента пропорциональности выступает все та же постоянная Планка. Отсюда следует, в частности, что определить, через какую щель пролетел электрон, можно лишь в том случае, если длина волны света меньше расстояния между щелями. А теперь самое главное!Предположим, что в нашем приборе (см. рисунок на странице 124) мы выбрали источник света с достаточно короткой длиной волны, уж во всяком случае, во много раз короче расстояния между щелями в маске.Включаем такой прибор — и увы! — убеждаемся в том, в чем уже неоднократно убеждались ученые как в результате экспериментальных исследований, так и в результате теоретического анализа: никакой интерференции! Вместо этого мы видим на экране одну световую полосу со слегка размытыми краями. Такая в точности полоса получается, если просто просуммировать светящиеся точки от попадания в экран электронов, прошедших через обе щели.Проделанный опыт однозначно свидетельствует: мы можем узнать, через какую щель прошел электрон, но тогда мы не получим интерференционной картины. Иными словами, электрон, о котором мы знаем, ведет себя принципиально иначе, чем электрон, о котором мы ничего не знаем.Будем теперь плавно увеличивать длину волны источника света. В тот момент, когда длина волны окажется сравнимой с расстоянием между щелями в маске, на экране восстановится интерференционная картина, однако теперь мы уже не сможем узнать, через какую щель прошел каждый данный электрон. Можно выбрать и такую длину волны, когда интерференционная картина уже начинает прорисовываться. Длина волны света еще достаточно мала, и мы можем приближенно судить о том, через какую щель прошел электрон, и при этом имеем частичную интерференционную картину. Кривая, показывающая зависимость интенсивности свечения экрана от расстояния вдоль оси к, — это кривая Б на рисунке 4.Повторяем еще раз: таковы результаты опыта, который мы проделали мысленно, а многие физики во всем мире проделывали и продолжают проделывать в настоящее время в натуре. Попробуем теперь их осмыслить. Похоже, что одно обстоятельство не должно вызывать сомнений. Количество информации, получаемое нами от электрона, зависит от длины волны источника света, которым мы освещаем электрон и щели. Здесь нужно указать на один очень важный факт. Результаты только что описанного опыта будут оставаться неизменными и в том случае, если убрать детекторы, сохранив лишь источник света.Этот факт свидетельствует в пользу того, что информация, о которой мы говорим, совершенно объективна. Ее необязательно получать, а достаточно иметь. принципиальную возможность ее получения. Количество этой информации зависит от длины волны источника света: чем короче длина световых волн, которыми мы «освещаем» электрон, тем точнее мы можем определить местоположение электрона, тем, соответственно, больше сведений (информации) мы принципиально можем о нем иметь.В. Гейзенберг сформулировал свой знаменитый принцип неточностей в 1927 году. В одной из статей, посвященных этому вопросу, он писал: «Если мы хотим уяснить, что следует понимать под словами «положение объекта», например электрона, необходимо указать определенные эксперименты, при помощи которых намереваются определить «положение электрона» и даже с какой угодно точностью. Например, мы освещаем электрон и рассматриваем его в микроскоп. При таком способе максимально достижимая точность определения положения в основном задается длиной волны используемого света. Но в принципе можно построить, например, гамма-лучевой микроскоп и с его помощью определить положение с желаемой точностью. Однако в этом измерении существенно побочное обстоятельство -эффект Комптона… В мгновение, когда определяется положение, иначе говоря, в мгновение, когда квант света отклоняется электроном, последний прерывно изменяет свой импульс. Это изменение тем сильнее, чем меньше длина волны используемого света, иначе говоря, чем выше точность определения положения. Поэтому в то мгновение, когда известно положение электрона, импульс может быть определен лишь с точностью до величин, соответствующих такому прерывному изменению; итак, чем точнее определяется положение, тем менее точно известен импульс, и наоборот».

ЧТО ТАКОЕ ФИЗИЧЕСКАЯ ВЕЛИЧИНА!

Описанный опыт позволяет поставить вопрос: в каких единицах мы можем теперь измерять информацию?Вернемся еще раз к обсуждению того, что такое физическая величина. Мы говорили, что определить понятие физической величины — это значит задать способ се измерения. Способ должен быть таким, чтобы одна и та же измерительная процедура давала бы одно и то же значение физической величины, независимо от того, в каких условиях эти измерения проводятся.Описанный опыт позволяет поставить вопрос: в каких единицах мы можем теперь измерять информацию?Вернемся еще раз к обсуждению того, что такое физическая величина. Мы говорили, что определить понятие физической величины — это значит задать способ се измерения. Способ должен быть таким, чтобы одна и та же измерительная процедура давала бы одно и то же значение физической величины, независимо от того, в каких условиях эти измерения проводятся.Можно сказать и больше: измерение — это всегда сравнение с эталоном. Причем в подавляющем большинстве случаев эталон имеет другую природу, нежели измеряемая величина. Так, приводя пример с силой тока, мы говорили, что ток силой в один ампер — это такой ток, который, проходя через раствор азотнокислого серебра, в течение одной секунды выделяет 1,118 миллиграмма металлического серебра. В данном случае эталоном для сравнения явилась гиря в 0,001 миллиграмма. Однако по-прежнему должно быть справедливым утверждение, что ток силой в один ампер всегда и при любых условиях при прохождении через раствор азотнокислого серебра в течение одной секунды будет сопровождаться выделением одного и того же количества серебра1.Но ведь ясно и другое. Ток силой в один ампер совсем необязательно пропускать именно через раствор азотнокислого серебра. Можно выбрать раствор другого какого-либо вещества, и при этом все будет тем же самым с единственным исключением, что количество выделившегося на электроде вещества в общем случае будет уже другим. Наконец, можно пропускать ток не через раствор, а, как это делается в большинстве амперметров, через подвижную катушку, находящуюся в магнитном поле. Тогда в качестве эталона будет выступать величина угла поворота катушки.Сказанное приводит нас к выводу, что, определяя физическую величину, мы можем задавать различные способы измерения и получать, вообще говоря, различные численные значения. И для того чтобы данная величина могла претендовать на ранг физической величины, необходимо лишь, чтобы различные значения, получаемые в измерениях различными способами, оказывались связанными между собой соответствующими физическими законами. Это справедливо и для информации. Объективность понятия информации ни в коей степени не будет уменьшена, если мы предложим другой способ измерений и соответственно будем получать в результате этих измерений другие численные значения количества информации.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*