KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии

П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн П.И.Бакулин, "Курс общей астрономии" бесплатно, без регистрации.
Перейти на страницу:

(см. § 40): оба компонента описывают в пространстве подобные (т.е. с одинаковым эксцентриситетом) эллиптические орбиты вокруг общего центра масс. Таким же эксцентриситетом обладает орбита звезды-спутника относительно главной звезды, если последнюю считать неподвижной. Большая полуось орбиты относительного движения спутника вокруг главной звезды равна сумме больших полуосей орбит движения обеих звезд относительно центра масс. С другой стороны, величины больших полуосей этих двух эллипсов обратно пропорциональны массам звезд. Таким образом, если из наблюдений известна орбита относительного движения, то на основании формулы (2.23) можно определить сумму масс компонентов двойной звезды. Если же известны отношения полуосей орбит движения звезд относительно центра масс, то можно найти еще отношение масс и, следовательно, массу каждой звезды в отдельности. В этом также заключается огромная роль изучения двойных звезд в астрономии: оно позволяет определить важную характеристику звезды – массу, знание которой необходимо, как мы видели, для исследования внутреннего строения звезды и ее атмосферы. Для определения элементов орбиты двойной звезды рассмотрим движение спутника S2 относительно главной звезды S1 (рис. 202). Она является эллипсом с большой полуосью а = а1 + а2, где а1 и а2 – большие полуоси эллипсов, описываемых каждой звездой вокруг общего центра масс. Главная звезда 5) находится в фокусе этого эллипса. Точка орбиты спутника, ближайшая к главной звезде, называется периастром (П), противоположная – апоастром (А). Движение спутника относительно главной звезды характеризуется элементами орбиты: величина орбиты определяется длиной большой полуоси а; форма – эксцентриситетом орбиты е; положение плоскости орбиты относительно наблюдателя – углом наклонения плоскости орбиты i, т.е. углом, который она составляет с перпендикулярной к лучу зрения картинной плоскостью; движение спутника характеризуется периодом обращения Р, обычно выражаемым в годах; положение спутника в любой момент времени легко определить, если задать момент прохождения спутника через периастр Т.

К этим пяти основным элементам следует добавить еще два, характеризующие положение большой оси эллипса орбиты в пространстве. Углы в плоскости орбиты отсчитываются от одного из ее узлов. Узлами

называются точки пересечения орбиты с картинной плоскостью. Угол в плоскости орбиты от узла до периастра называется долготой периастра (w). В картинной плоскости положение узла определяется позиционным углом р, отсчитываемым от направления на полюс мира до узла. Таким образом добавляется еще два элемента: р – позиционный угол узла орбиты (берется всегда меньше 180°); w – долгота периастра.

§ 155. Визуально-двойные звезды

Двойные звезды, двойственность которых обнаруживается при непосредственных наблюдениях в телескоп, называются визуально-двойными. Видимую орбиту звезды-спутника относительно главной звезды находят по длительным рядам наблюдений, выполненным в различные эпохи. С точностью до ошибок наблюдений эти орбиты всегда оказываются эллипсами (рис. 203). В некоторых случаях на основании сложного собственного движения одиночной звезды относительно звезд фона можно судить о наличии у нее спутника, который невидим либо из-за близости к главной звезде, либо из-за своей значительно меньшей светимости (темный спутник). Именно таким путем были открыты первые белые карлики – спутники Сириуса и

Проциона, впоследствии обнаруженные визуально. Собственные движения и видимые орбиты Сириуса и его спутника изображены на рис. 204. Видимая орбита визуально-двойной звезды является проекцией истинной орбиты на картинную плоскость. Поэтому для определения всех элементов орбиты прежде всего необходимо знать угол наклонения i. Этот угол можно найти, если видны обе звезды. Его определение основано на том, что в проекции на плоскость, перпендикулярную лучу зрения, главная звезда оказывается не в фокусе эллипса видимой орбиты, а в какой-то другой его внутренней точке. Положение этой точки однозначно определено углом наклонения i и долготой периастра w. Таким образом, определение элементов i и w, а также эксцентриситета е является чисто геометрической задачей. Элементы Р, Т и р получаются непосредственно из

наблюдений. Наконец, истинное значение большой полуоси орбиты а и видимое а’ связаны очевидным соотношением а' = a cos i.(11.24)

Из наблюдений а' и, следовательно, а получаются в угловой мере. Только зная параллакс звезды, можно найти значение большой полуоси в астрономических единицах (а.е.).

В настоящее время зарегистрировано свыше 60 000 визуально-двойных систем. Примерно у 2000 из них удалось обнаружить орбитальные движения с периодами от наименьшего 2,62 года у e Ceti до многих десятков тысяч лет. Однако надежные орбиты вычислены примерно для 500 объектов с периодами, но превышающими 500 лет.

§ 156. Затменные переменные звезды

Затменными переменными называются такие неразрешимые в телескопы тесные пары звезд, видимая звездная величина которых меняется вследствие периодически наступающих для земного наблюдателя затмений одного компонента системы другим. В этом случае звезда с большей светимостью называется главной, а с меньшей – спутником. Типичными примерами звезд этого типа являются звезды Алголь b Персея) и b Лиры. Вследствие регулярно происходящих затмений главной звезды спутником, а также спутника главной звездой суммарная видимая звездная величина затменных переменных звезд меняется периодически. График, изображающий изменение потока излучения звезды со временем, называется кривой блеска. Момент времени, в который звезда имеет наименьшую видимую звездную величину, называется эпохой максимума, а наибольшую – эпохой минимума. Разность звездных величин в минимуме и максимуме называется амплитудой, а промежуток времени между двумя последовательными максимумами или минимумами – периодом переменности. У Алголя, например, период переменности равен 2d 20h 49m, а у b Лиры – 12d 21h 48m. По характеру кривой блеска затменной переменной звезды можно найти элементы орбиты одной звезды относительно другой, относительные размеры компонентов, а в некоторых случаях даже получить представление об их форме. На рис. 205 показаны кривые блеска некоторых затменных переменных звезд вместе с полученными на их основании схемами движения компонентов. На всех кривых заметны два минимума: глубокий (главный, соответствующий затмению главной звезда спутником), и слабый (вторичный), возникающий, когда главная звезда затмевает спутник.

На основании детального изучения кривых блеска можно получить следующие данные о компонентах затменных переменных звезд: 1. Характер затмений (частное, полное или центральное) определяется наклонением i и размерами звезд. Когда i = 90°, затмение центральное, как у b Лиры (см. рис. 203). В тех случаях, когда диск одной звезды полностью перекрывается диском другой, соответствующие области кривой блеска имеют характерные плоские участки (как у IH Кассиопеи), что говорит о постоянстве общего потока излучения системы в течение некоторого времени, пока меньшая звезда проходит перед или за диском большей. В случае только частных затмений минимумы острые (как у RX Геркулеса или b Персея). 2. На основании продолжительности минимумов находят радиусы компонентов R1 и R2 , выраженные в долях большой полуоси орбиты, так как продолжительность затмения пропорциональна диаметрам звезд. 3. Если затмение полное, то по отношению глубин минимумов можно найти отношение светимостей, а при известных радиусах, – также и отношение эффективных температур компонентов. 4. Отношение промежутков времени от середины главного минимума до середины вторичного минимума и от вторичного минимума до следующего главного минимума зависит от эксцентриситета орбиты е и долготы периастра w. Точнее, фаза наступления вторичного минимума зависит от произведения е cos w. Если вторичный минимум лежит посередине между двумя главными минимумами (как у RX Геркулеса), то орбита симметрична относительно луча зрения и, в частности, может быть круговой. Асимметрия положения вторичного минимума позволяет найти произведение е cos w. 5. Наклон кривой блеска, иногда наблюдаемый между минимумами, позволяет количественно оценить эффект отражения одной звездой излучения другой, как, например, у b Персея. 6. Плавное изменение кривой блеска, как, например, у b Лиры, говорит об эллипсоидальности звезд, вызванной приливным воздействием очень близких компонентов двойных звезд. К таким системам относятся звезды типа b Лиры и W Большой Медведицы (рис. 206). В этом случае по форме кривой блеска можно установить форму звезд. 7. Детальный ход кривой блеска в минимумах иногда позволяет судить о законе потемнения диска звезды к краю. Выявить этот эффект, как правило, очень трудно. Однако, в отличие от Солнца, это единственный имеющийся в настоящее время метод изучения распределения яркости по дискам звезд. В итоге на основании вида кривой блеска затменной переменной звезды в принципе можно определить следующие элементы и характеристики системы: i – наклонение орбиты; Р – период; Т – эпоха главного минимума; е – эксцентриситет орбиты; w – долгота периастра; R1 и R2 – радиусы компонентов, выраженные в долях большой полуоси; для звезд типа b Лиры – эксцентриситеты эллипсоидов, представляющих форму звезд; L1/L2 – отношение светимостей компонентов или их температур T1/T2 . Для некоторых особых типов звезд (например, Вольфа – Райе), если они затменные, удается найти ряд дополнительных характеристик.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*