Э Розенталь - Геометрия, динамика, вселенная
Представить на бумаге все эти трехмерные фигуры невозможно. Однако хорошим наглядным аналогом трехмерной сферы является двумерная сфера. В дальнейшем мы и будем пользоваться для наглядности этим образом.
Выберем далее в нашем изотропном и однородном пространстве три точки A, B, и C, расположенные на малых расстояниях друг от друга.
Рассмотрим сначала две точки A и B. Вектор r|| является
AB единственным выделенным направлением в нашем изотропном пространстве. Поэтому скорость v|| движения этих двух точек
AB имеет только относительный характер, причем оба вектора коллинеарны. Иначе говоря, в пространствах постоянной кривизны осуществляется равенство
v|| = H(r,t) r|| (56) AB AB
где функция H(r,t), казалось бы, зависит от обоих аргументов r и t. Но далее, несколько модифицируя рассуждения Е.Милна, мы покажем, что в действительности вследствие симметрических свойств пространства функция H=H(t), т.е. она не зависит от вектора r. Для этого рассмотрим точки A, B, C. Поскольку мы предполагаем, что размеры области w малы, то ее можно локально описывать геометрией Евклида. Тогда справедливы правила векторного сложения:
r|| = r|| + r|| , (57) AB AC CB
v|| = v|| + v|| . (58) AB AC CB
Но очевидно, что равенства (57), (58) можно совместить с соотношением (56) лишь в случае, если H=H(t), т.е. зависит исключительно от времени.
===РИС.6
В наших рассуждениях неявно предполагалось, что эволюция области w автономна; оставшаяся область V-w (V объем всей сферы) не влияет на динамику малой области w. Однако это предположение также является следствием основных космологических постулатов или симметрии пространств постоянной кривизны. Действительно, если выбрать малый объем в форме сферы, то, допуская, что силы, действующие между частицами, - силы притяжения, нетрудно понять (рис.6), что любому элементу F большой сферы, действующему на микросферу, будет соответствовать элемент G, уравновешивающий это притяжение. Поскольку это рассуждение верно для любых пар элементов F и G, то это означает, что объем V-w не действует на объем w и, следовательно, эволюция последнего происходит самостоятельно и независимо от объема V. Поэтому, рассматривая эволюцию малого объема, мы моделируем эволюцию всего объема. Итак, в пределах объема w
v|| = H(t) r|| (59) AB AB
для любых пар точек A и B. Уравнение (59) можно переписать в форме
dr|| / dt = H(t) r|| (60) AB AB
Рассмотрим далее два случая.
1. Функция 1/H(t) разлагается в ряд Тейлора в окрестности t=0.
2. Функция 1/H(t)=const, т.е. не разлагается в ряд Тейлора.
Первый случай. Пусть 1/H(t)=a|+b|t+...(a|,b|
1 1 1 1 постоянные) Допуская, что b /= 0 и используя трансляционную инвариантность времени Вселенной, т.е. совершая замену a|+b|t -> b|t , получаем уравнение dr|| / dt = (br|| / t) 1 1 1 AB AB (b=1 / b=const), решением которого является функция
b r|| ~ t| . (61) AB
Поскольку точки A и B произвольны, то зависимость (61) отражает известную степенную зависимость масштабного фактора от времени в модели Фридмана. Далее можно, постулируя статистические свойства материи в Метагалактике, определить численное значение параметра b, а основываясь не свойствах симметрии пространства, вывести полное решение, полученное Фридманом на основании ОТО (напомним, что зависимость (61) получена для малых значений времени t| , отсчитываемого от
k начала расширения).
Теперь рассмотрим второй случай, когда H(t)=const. Он также соответствует двум различным физическим картинам.
1. H /= 0. Тогда решение уравнения (60) имеет вид
Ht r|| ~ e|| . (62) AB
Расстояние между двумя точками очень быстро (экспоненциально) увеличивается с ростом времени. Можно показать, что в этом случае плотность материи остается неизменной: RO = const (t) .
Зависимость (62) была получена на заре космологии де Ситтером`, но была отвергнута научной общественностью именно из-за странной зависимости RO(t). Было неясно, каким образом быстрое изменение объема системы не приводит к изменению плотности. Для всех известных тогда форм материи (вещество, излучение) оба основных вывода, следующих из модели де Ситтера, противоречили друг другу. Лишь сравнительно недавно выяснилось, что существует третья форма материи - физический вакуум, который удовлетворяет обоим выводам, следующим из стационарной (RO=const) модели де Ситтера.
-----------------------------------------------------------` Модель Вселенной была разработана нидерландским астрономом В. де ситтером в 1917 г. на основе общей теории относительности. Подробное изложение модели де Ситтера в ее первоначальной интерпретации содержится в кн.: Толмен Р. Относительность, термодинамика и космология. М.: Наука, 1974. -----------------------------------------------------------
2. Наконец, остается последний случай H=0. Этот случай соответствует равенству r|| = const(t) . Все взаимные расстояния (также как и другие физические характеристики) не изменяются со временем. Метагалактика полностью статична, что соответствует космологической модели Эйнштейна.
ТАким образом, мы привели аргументы (которые при более детальном анализе можно сделать более строгими) в пользу того, что космологические постулаты о геометрии Метагалактики (Вселенной) в значительной степени определяют динамику ее эволюции.
4. ПРОБЛЕМЫ ФРИДМАНОВСКОЙ КОСМОЛОГИИ
Фридмановская космология согласуется со всеми наблюдательными данными. Однако при анализе замкнутости, самосогласованности фридмановской модели возникают многие проблемы, на которые предпочитали не обращать внимания, концентрируя акценты на ее достижениях.
Здесь мы остановимся на двух (из многих) проблемах, которые нам представляются наиболее существенными.
С_и_н_г_у_л_я_р_н_о_с_т_ь. Решение (61), которое соответствует модели Фридмана, приводит к заключению, что при t|=0 радиус Метагалактики был равен нулю, и,
u следовательно, плотность RO вещества в этот момент равнялась бесконечности. Такая ситуация называется сингулярностью. Этот результат противоречит всему физическому опыту. При решениях многих физических задач в решениях возникают бесконечности, однако оказывается, что в уравнениях, описывающих данное явление, допущена идеализация. При увеличении одного (или нескольких) параметров возникают новые процессы, которые препятствуют возникновению бесконечности. Типичное проявление подобного феномена кулоновское взаимодействие на малых расстояниях. Прямолинейное использование формулы F = e**2 / r**2 для описания взаимодействия двух электронов с зарядом e приводит к ошибочным результатам при расстояниях между электронами меньше 10**-11 см. В случае r < 10**-11 см начинают играть роль квантовые поправки, которые требуют применения квантовой электродинамики. Однако, как теоретически показали Л.Д.Ландау, И.Я.Померанчук и Е.С.Фрадкин, при r ~< 10**-32 10**-33 см квантовая электродинамика становится также неприменимой. По всеобщему убеждению, при столь малых расстояниях нужно учитывать все взаимодействия, в том числе и гравитационное, что должно привести к ликвидации сингулярности в рамках квантовой интерпретации закона Кулона при r -> 0 . В соответствии с приведенными соображениями нельзя использовать закон Кулона при r -> 0 .
Проблема сингулярности не нова. Еще А.Эйнштейн сомневался в применимости классической (неквантовой) теории - ОТО при очень больших плотностях. Однако он не мог предложить количественных оценок для пределов применимости ОТо. Строго говоря, и сейчас нет их точного определения. Однако, по всеобщему убеждению, ОТО неверна при приближении к планковским величинам: длина l| ~ (HP * G / c**3)**(1/2) ~
p 10**-33 см, время t| ~ (HP * G / c**5)**(1/2) ~ 10**-43 с и
p плотность RO| ~ c**5 / HP * G**2 ~ 10**94 г/см**3 .
p Последняя величина чудовищно велика: масса метагалактики равна "только" 10**55 г. Подчеркнем, однако, что нарушение ОТО при планковских величинах полагают обязательным. Происходит ли оно существенно ранее - неизвестно, поскольку экспериментальные данные весьма далеки от планковских величин. Напомним еще раз, что наименьшие измеренные расстояния r ~~ 10**-16 см.
Избавиться от сингулярности путем прямолинейного отказа от основных космологических постулатов невозможно. Как показали английские физики Р.Пенроуз и С.Хокинг, при весьма общем и естественном условии - выполнении энергодоминантности EPS+p>0 (EPS - плотность энергии, p давление) сингулярность в рамках ОТО неизбежна.
П_р_о_б_л_е_м_а г_о_р_и_з_о_н_т_а. В соответствии с теорией относительности информация от одного объекта к другому распространяется со скоростью v =< c . Следовательно, если в некоторый момент времени t=0 два объекта располагались в одной точке, то через некоторое время t=t| они будут причинно связаны лишь при условии, если
1 расстояние r между ними удовлетворяет условию r =< ct|.
1 Пусть величина t| = t| (t| - время существования
1 u u Метагалактики), тогда расстояние R=ct| есть максимальное
u расстояние, причинно связывающее две произвольные точки в метагалактике, например Землю и некоторую галактику. Расстояние R=ct| называется горизонтом. Если подставить в