KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Джордж Джонсон - Десять самых красивых экспериментов в истории науки

Джордж Джонсон - Десять самых красивых экспериментов в истории науки

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Джордж Джонсон, "Десять самых красивых экспериментов в истории науки" бесплатно, без регистрации.
Перейти на страницу:

Похоже, Эд совсем не собирался продавать что-либо из своих сокровищ. Он скорее был готов воздвигнуть пару монументов, чтобы озадачить археологов будущего, которое наступит после грядущего холокоста, или поговорить о своей Первой церкви высоких технологий, где по воскресеньям совершает «критическую массу» (мессу). И когда очередной клиент разыскивал его в недрах этого магазина-логова, Эд всегда выглядел недовольным. Вот и сейчас я услышал: «За это — двести пятьдесят долларов», — ровно в десять раз больше, чем я предполагал.

Я пытался его урезонить. В интернет-магазине я видел один очень похожий источник питания всего за 99 долларов. Однако торговаться с Эдом было бесполезно. Разочарованный, я потащил прибор обратно на то место, где он, возможно, покоится до сих пор, и ушел, купив лишь отрезок кабеля. Затем я зашел в публичную библиотеку, которая находится рядом с ресторанчиком «Фуллерлодж», где частенько бывали Оппенгеймер и другие физики-ядерщики, соединился с интернетом, оформил заказ и через две недели у меня дома уже был другой такой же источник питания.

В 1896 году Роберт Милликен, молодой выпускник Колумбийского университета с докторским дипломом в кармане, оказался на лекции Вильгельма Рентгена. Лекция сопровождалась демонстрацией полученных им изображений костей руки. Лекция та была прочитана на январской сессии Германского физического общества. Милликен был потрясен увиденным и услышанным как ребенок, столкнувшийся с чудом, и позже, вспоминая тот день, даже перепутал дату и написал, что лекция состоялась накануне Рождества.

Двумя годами ранее, в Соединенных Штатах, он слышал, как великий Майкельсон утверждал, что физика еще далека от своего завершения. Законы движения и оптики прочно заняли свое место, а уравнения Максвелла накрепко связали электричество и магнетизм той нитью, что пряли Фарадей и его современники, Генрих Герц, проверяя теорию Максвелла, показал, что радиоволны могут отражаться, преломляться, фокусироваться и поляризоваться и что они являются лишь одним из вариантов света. Но здесь было новое, совершенно неожиданное явление — рентгеновские лучи!

Милликен был счастлив оттого, что прежние воззрения оказались ложными. «Нам не удалось ни к чему приблизиться в исследованиях глубин Вселенной, даже в вопросе о фундаментальных физических принципах, как нам думалось раньше».

Рентген совершил свое удивительное открытие, исследуя светящуюся точку, которая возникает в конце вакуумной стеклянной «разрядной трубки», когда достаточно высокое напряжение подается на две металлические пластины внутри нее — отрицательно заряженный катод и положительно заряженный анод (эти термины появились благодаря Фарадею). Проходящие через разреженный воздух, эти катодные лучи оказались весьма загадочными. Если внутрь этой лампы поместить препятствие — химик и медиум Уильям Крукс для этой цели использовал мальтийский крест, — то его тень появится на флюоресцирующем стекле; это означает, что лучи, как пуля, движутся по прямой. Если рядом с трубкой разместить магнит, то пучок сместится вбок. Если внутрь трубки поместить драгоценный камень, то он начнет флюоресцировать. Кроме того, эти лучи представляли собой поток вещества, которое вращало крохотную крыльчатку в лампе. Крукс объявил: «Теперь физикам известны четыре состояния вещества — твердое, жидкое, газообразное и лучистое.»



Трубки Крукса: катодные лучи заставляют светиться бриллиант, оставляют тень от мальтийского креста и двигают лопатки крыльчатки, оказавшейся на их пути

Рентген обнаружил еще большую странность: если пучок ударяет в конец трубки с достаточной силой, то возникает совершенно иное излучение, достаточно мощное для того, чтобы проникать сквозь плоть. Не прошло и года, как Анри Беккерель обнаружил в Париже еще одну форму проникающих лучей, испускаемых кусочками урана, проходящих через непрозрачный экран и оставляющих след на фотопластине. Вскоре стало ясно, что оба типа излучения могут ионизировать газ и наделять его электрическим зарядом. Теперь мы знаем, что это происходит потому, что обнаруженные лучи выбивают электроны из атомов.

Вернувшись из Европы, чтобы приступить к работе в Чикагском университете, где в то время царствовал Майкельсон, Милликен издалека наблюдал за работами некоторых величайших европейских ученых, увлеченных новой физикой. В Кавендишской лаборатории Кембриджа Дж. Дж. Томсон показал, что пучок можно отклонять не только магнитом, но и сильным электрическим полем. Герц неудачно провел эксперимент, в котором пучок проходил между параллельными пластинами внутри вакуумной лампы. Когда на пластины подавалось напряжение от электрического элемента, пучок не смещался. Герц решил, что эти лучи — нематериальные возмущения эфира. (Урок Майкельсона-Морли все еще не был усвоен.)

Томсон подозревал, что Герц недостаточно откачал воздух из лампы и оставшиеся молекулы закорачивают пластины так, словно они оказываются под дождем. При более высоком вакууме он смог подтолкнуть пучок в сторону положительного полюса — серьезное указание на то. что катодные лучи состоят из отрицательно заряженного вещества, частиц электричества, или электронов.


Эксперимент Дж. Дж. Томсона. В точке С возникают катодные лучи, которые проходят через положительно заряженный анод (А), затем через отверстие В и между пластинами D и Е и высвечивают точку в конце трубки. Подача напряжения на пластины заставляет луч отклоняться

Я не собирался покупать установку Томсона, но красота эксперимента настолько соблазнила меня, что я не устоял: в простой деревянной рамке установлена сферическая вакуумная трубка с заострениями, а большие медные катушки Гельмгольца (названы так в честь немецкого физика Германа фон Гельмгольца) крепятся по бокам. При расстоянии между ними, равном их радиусу (15 см), они создавали равномерное магнитное поле, в котором оказывалась трубка. Прибор был изготовлен в Германии для демонстрации на уроках физики, и посеревшее и потрескавшееся покрытие электрических клемм позволяло предполагать, что сделали его в 60-е годы прошлого века.

Никакого руководства не было, а вместо него оказался толстый лист чертежной бумаги, на котором кто-то цветными карандашами изобразил схему включения прибора: для разогрева металлического катода и выброса электронов, ускоряющихся значительно большим напряжения на аноде, подавалось напряжением 6,3 В. Третий источник тока должен был питать катушки Гельмгольца. Я подсоединил провода к моему источнику питания и выключил свет.



Современный вариант установки Томсона Рисунок Элисон Кент

Зрелище было жутковатым. По мере того как я увеличивал напряжение на аноде, вокруг катода собиралось зеленоватое облако в форме яблока, оно росло и наполнялось светом до тех пор, пока при 160 В тонкий как волосок синий луч «выстрелил» из самой сердцевины и ударил в верхнюю часть стекла. Настоящий джинн в бутылке! Каким страшным это все должно было казаться Круксу и другим пионерам электронно-лучевых приборов! Некоторым чудилось, что они видят эктоплазму, ту самую субстанцию, появляющуюся из отверстий в теле медиума во время спиритического сеанса. Поднеся стержневой магнит к стеклу, я заставил джинна искривиться. Черный полюс отклонял пучок на меня, а красный — отталкивал.

Теперь пришла пора подать напряжение на катушки. Я стал потихоньку вертеть ручку, и при напряжении 3,5 В и токе 0,76 А пучок закрутился по часовой стрелке и образовал сияющий круг внутри трубки. Если анод старался толкать электроны строго вверх, то магнитный ветер сносил их в сторону — две силы встретились под прямым углом и, как понял Томсон, результат этой борьбы зависит от массы частиц и их заряда. Эксперимент не мог ему дать ни одной из этих величин (потому что легкие, слабо заряженные частицы будут вести себя так же, как и тяжелые частицы с большим зарядом). Но соотношение величин определить можно.

Я подставил свои величины — анодного напряжения, тока на катушках, радиуса мерцающего круга — в его уравнение и произвел вычисления. Получилось 2,5 х 108 кулона на грамм (единица электрического заряда «кулон» была названа в честь французского ученого Шарля Огюстена Кулона, она приблизительно равняется количеству электричества, проходящему ежесекундно через 100-ваттную лампочку). Я получил итоговую величину примерно на 50 % больше общепринятой, но был доволен тем, что хоть количество нулей в результате совпало.

Более важным было то, что Томсон собирался показать, а именно: отношение заряда и массы частиц луча не зависит ни от конкретного газа в трубке, ни от металла, из которого сделан катод. Это означает, что, независимо ни от чего, луч будет состоять из одного и того же вещества.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*