А. Скорик - Шпаргалка по концепциям современного естествознания
– акторегуляцию (саморегуляция). Это способность живого организма сохранить свой состав и свойства на относительно постоянном уровне независимо от меняющихся условий среды. Кроме этого, для живых систем характерна высокая степень организации. Различают несколько структурно-функциональных уровней организации живой материи.
На молекулярном уровне рассматривается роль химических соединений, важных для поддержания жизнедеятельности организма (белков, жиров, углеводов).
На клеточном уровне изучается структурная организация клетки и физиолого-биохимические и структурно-функциональные связи между клетками в различных тканях и органах.
На тканевом и органном уровне изучаются те явления и процессы, которые происходят в особи, а также механизмы функционирования органов как систем, приспособленные изменения и поведение организмов в различных экономических условиях.
Популяционно-видовой уровень отличается от других уровней тем, что популяция при оптимальных условиях среды обитания способна развиваться неограниченно долго. Это принципиально отличается от продолжительности жизни живого организма, так как он умирает, исчерпав возможности своего развития, которые заложены в генетической информации.
Экосистемный (биосферно-биогенетический) уровень рассматривает взаимоотношения организма и среды, а также закономерности протекания энергетических круговоротов и тех процессов, которые протекают в экосистемах.
58. ПРЕДСТАВЛЕНИЯ О ЦЕЛОСТНОСТИ ОБЪЕКТОВ В БИОЛОГИИ
Слово система (от греч. systema – «целое, составленное из частей»)означает совокупность взаимосвязанных элементов, образующих единство (целостность). Для характеристики системного начала объектов обычно прибегают к принципам целостности, структурности, иерархичности, уровневости. Системность объекта предполагает расчлененность на составные части и в то же время наличие связей между компонентами системы, именно взаимосвязь компонентов отличает систему от множества, от совокупности одного общего состояния. Только объединенные в одно целое элементы составляют систему. Принцип системности гласит, что свойства системы как целого не определяются суммой свойств составляющих элементов, а есть нечто новое.
Объекты биологии – это развивающиеся объекты-системы, и все они характеризуются таким общим свойством, как целостность. Например, в отношении биологических объектов выдающийся биолог-эволюционист И. И. Шмальгаузен писал, что организм не есть мозаика частей, органов или признаков. «Целое не получается суммированием частей, хотя бы и при участии какого-либо дополнительного фактора. Оно развивается одновременно с обособлением частей по мере прогрессивного усложнения организации. Нельзя говорить, что целое больше, чем сумма частей. Мы вообще не имеем суммы, так как свойства частей сняты, а в целом мы имеем новые свойства. Организм – не сумма, а система, т. е. соподчиненная сложная взаимосвязь, дающая в своих противоречивых тенденциях, в своем непрерывном движении высшее единство – развивающуюся организацию». Сравнительный анализ процессов образования целостности в разных системах позволяет предположить, что наряду со специфическим существует и универсальный механизм формирования целостности. Частнонаучные исследования показывают, что формирование целостности происходит параллельно с «расслоением» системы на уровни. Механизм образования целостности на материале биологических систем выявляет И. B. Шмальгаузен. Он показал, что организм как целое совершенствуется в ходе и благодаря специализации частей, его составляющих. Причем чем больше специализация частей, тем больше они оказываются в зависимости друг от друга и от организма в целом. «Целое, несущее лишь общие функции, расчленяется на части с разными более специальными функциями, – писал И. И. Шмальгаузен. -Целое дифференцируется, а части специализируются. Однако эта автономизация выражается лишь в обособлении своей специфической функции. Жизнь любой части обеспечивается целым рядом общих функций...»
Обобщая сказанное, можно утверждать, что развивающиеся объект-системы характеризуются таким универсальным признаком, как целостность, а процесс образования целостности связан с формированием уровней организации. Целостность предполагает упорядоченность, наличие классов частей в противоположность хаотическому смешению элементов. В результате возникает иерархическая система, где все разнообразие элементов подразделяется на соподчиненные уровни организации. Это правило, действительно, оказывается универсальным для строения систем. Иерархичность организаций особенно заметна у биологических объект-систем: клетка – организм – популяция – биоценоз.
59. ОБЩАЯ ХАРАКТЕРИСТИКА СИСТЕМАТИКИ МОДЕЛЕЙ В БИОЛОГИИ
Существуют всевозможные классификации математических моделей.
В наибольшей степени обобщения модели любых систем могут быть двух типов – эмпирические и теоретические. Эмпирические модели – это математические выражения, аппроксимирующие экспериментальные данные о зависимости параметров состояния системы от значений параметров влияющих на них факторов. Для эмпирических математических моделей не требуется получения никаких представлений о строении и внутреннем механизме связей в системе. Вместе с тем задача о нахождении математического выражения эмпирической модели по заданному массиву наблюдений в пределах выбранной точности описания явления неоднозначна. Существует бесконечное множество математических выражений, аппроксимирующих в пределах данной точности одни и те же опытные данные о зависимости параметров.
Теоретические модели систем строятся на основании синтеза обобщенных представлений об отдельных слагающих их процессах и явлениях, основываясь на фундаментальных законах, описывающих поведение вещества, энергии, информации. Теоретическая модель описывает абстрактную систему, и для первоначального вывода ее соотношений не требуется данных о наблюдениях за параметрами конкретной системы. Модель строится на основе обобщения априорных представлений о структуре системы и механизма связей между слагающими ее элементами.
Наряду с эмпирическими и теоретическими используются и полуэмпирические модели. Для них математические выражения получаются теоретическим путем с точностью до эмпирически получаемых констант либо в общей системе соотношений моделей наряду с теоретическими выражениями используются и эмпирические.
Теоретическая модель описывает не конкретную систему, а класс систем. Поэтому проверка теоретической модели возможна при исследовании конкретных частично или полностью наблюдаемых систем. Затем проверенную таким образом теоретическую модель можно применять для описания и изучения конкретных ненаблюдаемых систем, относящихся к тому же либо к более узкому классу. Методы моделирования во многом сходны. Так, чрезвычайная сложность биологических систем заставляет с осторожностью относиться к данным, полученным при использовании их моделей, требует верификации данных. Специфичность биологических систем требует применения адекватного математического аппарата. Моделирование как метод исследования все шире используется в биологии. Выделяют следующие уровни структурной организации живого: клеточный – тканевой – органный – организменный – попу-ляционный – биоценотический – экосистемный. На каждом уровне в качестве объекта исследования выступают клетка, ткань, организм, популяция, сообщество, экосистема. Модели нашли свое применение на каждом уровне организации. Так, на клеточном уровне наиболее известны модели различных биохимических процессов, например фотосинтеза или биосинтеза белка. На органно-тканевом уровне часто применяются модели динамики физиологических процессов, как, например, модели образования и накопления молочной кислоты в мышцах.
С повышением уровня организации с помощью моделей удается получать преимущественно качественную информацию, в противном случае – количественную.
60. КЛЕТКА КАК ФУНДАМЕНТАЛЬНАЯ МОДЕЛЬ ЖИВОЙ МАТЕРИИ НА МИКРОУРОВНЕ
Клетки – это структурные и функциональные единицы живых организмов. Подобное представление, известное как клеточная теория, сложилось постепенно в XIX в. в результате микроскопических исследований. Можно вполне убедительно обосновать клеточную основу жизни. Клетка представляет собой самовоспроизводящуюся химическую систему. Для того чтобы поддерживать в себе необходимую концентрацию химических веществ, эта система должна быть отделена от своего окружения и должна обладать способностью к обмену с этим окружением.
Все клетки живых организмов содержат цитоплазму и генетический материал в форме ДнК. ДНК регулирует жизнедеятельность клетки и воспроизводит самое себя, благодаря чему образуются новые клетки.