KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Айзек Азимов - Земля и космос. От реальности к гипотезе

Айзек Азимов - Земля и космос. От реальности к гипотезе

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Айзек Азимов, "Земля и космос. От реальности к гипотезе" бесплатно, без регистрации.
Перейти на страницу:

Второй аргумент таков. Движущееся тело имеет кинетическую энергию, которую мы можем считать равной mv2/2, где m — масса, a v — скорость. Если к телу прикладывается сила таким образом, что кинетическая энергия возрастает, эта энергия может увеличиться потому, что увеличивается v, или потому, что увеличивается m, или же из-за одновременного увеличения как v, так и m. При обычных скоростях все изменения происходят только со скоростью, так что мы можем предположить (хотя это предположение неверное), что масса остается постоянной при всех обстоятельствах.

Однако на самом деле как скорость, так и масса возрастают в результате приложения силы, но изменение массы столь незначительно при обычных скоростях, что измерения незаметны. Однако когда скорость относительно наблюдателя возрастает, то все больше энергии будет затрачиваться на увеличение массы и меньше — на возрастание скорости. Ко времени, когда скорость окажется очень близкой к скорости света, фактически вся энергия будет затрачиваться на увеличение массы, и ничего не будет оставаться на увеличение скорости. Это приведет к тому, что скорость света никогда не будет достигнута.

И не спрашивайте почему. Так устроен мир.

Однако я надеюсь, вы заметили, что, рассказывая о бесконечном возрастании массы при скорости света, я был вынужден утверждать: «Это правда независимо от значения m0 — важно лишь то, что оно отлично от нуля».

Конечно, все частицы, из которых мы состоим, — протоны, электроны, нейтроны, мезоны, гипероны и так далее, — имеют массу покоя больше нуля, так что эта оговорка не кажется очень ограничивающей. В самом деле, люди обычно говорят: «Невозможно достичь или превысить скорость света», не уточняя, что они имеют в виду объекты, имеющие массу покоя большую, чем ноль, поскольку они считают, что такими являются все объекты.

Я не уточнял это в статье «Невозможно, и это все», что и дало возможность посчитать меня занудой. Если мы примем во внимание это ограничение, тогда все, что я сказал, примет законченный вид.


А теперь продолжим и рассмотрим тела с массами m0, не отличными от нуля.

Возьмем, к примеру, протон, частицу электромагнитного излучения — видимый свет, микроволны, гамма-лучи и так далее.

Что мы знаем о протонах? В первую очередь то, что протон всегда имеет конечную энергию, так что значение этой энергии находится где-то между 0 и ∞. Энергия, как показал Эйнштейн, эквивалентна массе, согласно уравнению, которое он записал в следующем виде: e = mc2. Это означает, что масса любого протона может быть вычислена при помощи этого уравнения и иметь величину от 0 и до ∞.

Мы также знаем о протонах, что они движутся (относительно любого наблюдателя) со скоростью света. В самом деле, свет имеет эту скорость потому, что он «состоит» из протонов.

Теперь, когда нам известны эти две вещи, преобразуем уравнение 2:

 (уравнение 3).

Для протонов v = с, и теперь уравнение 3 приобретает вид:

m(0) = m0 (уравнение 4).

Если бы протон был обыкновенным, имеющим массу объектом и перемещался бы со скоростью света, его масса (m) была бы бесконечной. Уравнение 4 тогда бы приобрело вид ∞ × (0) = m0, а подобное уравнение в математике недопустимо.

Протон, однако, может приобрести значение для m от 0 до ∞ (хотя он и перемещается со скоростью света), но для любого значения m между 0 и ∞ значение m0 в уравнении 4 равно 0.

Это означает, что для протонов масса покоя (m0) равна нулю. Если масса покоя равна нулю, значит, объект может двигаться со скоростью света.

(Это дает ответ на вопрос, который постоянно мне задают корреспонденты, считая, что они нашли противоречие в логике Эйнштейна. Вопрос звучит так: «Если что-либо, двигающееся со скоростью света, имеет бесконечную массу, как могут протоны не иметь бесконечную массу?» Ответ заключается в том, что следует различать частицы, чья масса покоя равна 0, и частицы, у которых масса покоя больше 0. К сожалению, корреспонденты будут задавать свой вопрос вне зависимости от того, как часто я буду им это объяснять.)


Но пойдем дальше. Предположим, что протон движется со скоростью, меньшей скорости света. В этом случае величина под квадратным корнем в уравнении 3 станет больше нуля — и к тому же будет умножена на массу m, величина которой больше нуля. Если два значения, каждое из которых больше нуля, умножить, тогда результат (в данном случае m0) должен быть больше нуля.

Это означает, что, если протон движется со скоростью, меньшей скорости света (не важно, насколько меньшей), его масса покоя не может быть равной нулю. То же самое будет справедливо по отношению к протону, двигающемуся со скоростью, большей скорости света. (В дальнейшем мы увидим, что с уравнением на скоростях, больших скорости света, происходят довольно забавные вещи — но при всем этом следует помнить, что масса покоя в этом случае уже не может быть равна нулю.)

Физики настаивают на том, что масса покоя должна быть постоянной для любого данного тела, поскольку все феномены, которые они измеряют, имеют смысл только в этом случае. Для того чтобы масса покоя протона оставалась постоянной, протон всегда должен двигаться со скоростью света, и ни на йоту больше или меньше — конечно, при условии движения сквозь вакуум.

Когда протон возникает, он немедленно, без какой-либо задержки во времени, начинает двигаться прочь из точки происхождения со скоростью 186 281 миль/с. Это может звучать парадоксально, поскольку подразумевает бесконечное ускорение и, таким образом, бесконечную силу — но стоп…

Второй закон Ньютона, связывающий силу, массу и ускорение, применим только к телам с массой покоя больше нуля. Он действительно неприменим к телам, чья масса покоя равна нулю.

Таким образом, если энергия вливается в обыкновенное тело при обыкновенных условиях, его скорость возрастает; если энергия вычитается, его скорость уменьшается. Если энергия вливается в протон, его частота (и масса) увеличивается, но скорость остается неизменной; если энергия вычитается, его частота (и масса) уменьшается, но скорость также остается неизменной.

Но если все это так, то кажется лишенным здравого смысла говорить о «массе покоя» в связи с протонами, поскольку это подразумевает, что протон имеет в покое массу, а протон никогда не может быть в покое.

Альтернативный термин был предложен О. М. Биланюком и И. К. Г. Сударшаном. Этот термин — «собственная масса». Собственная масса объекта — это постоянное значение массы, которая неотъемлемо свойственна телу и не зависит от скорости. В случае с обыкновенными телами эта свойственная телу масса равна той, которая может быть измерена у данного тела в состоянии покоя. Но в случае с протоном таких прямых измерений сделать невозможно, и потому приходится определять его массу путем размышлений.


Протон не единственное тело, которое может и должно двигаться со скоростью света. Любое тело с собственной массой, равной нулю, может и должно так вести себя. Вдобавок к фотонам существует не менее пяти различных видов частиц, у которых, как полагают, собственная масса равна нулю.

Одна из них — гипотетический гравитон — источник силы гравитации. Существование гравитона, похоже, в 1969 году было подтверждено окончательно.

Другие четыре частицы — это различные нейтрино: 1) само нейтрино, 2) антинейтрино, 3) мюон-нейтрино и 4) мюон-антинейтрино.

Гравитон и все нейтрино могут и должны передвигаться со скоростью света. О. М. Биланюком и И. К. Г. Сударшаном было высказано предложение, что все частицы, двигающиеся со скоростью света, должны быть объединены вместе в группу «люксонов» (от греческого слова, обозначающего «свет»).

Все частицы с собственной массой больше нуля, которые, таким образом, не могут достичь скорости света и потому должны всегда двигаться с меньшими скоростями, собраны вместе в класс «тардионов». Позднее появилось выражение «subluminal», «досветовые», для обозначения скоростей тардионов.


Но представим себе то, что невозможно представить, и рассмотрим частицы, которые могут двигаться со сверхсветовыми скоростями. Впервые в строгом соответствии с релятивистскими принципами (не как простое рассуждение в стиле научной фантастики) это предположение было рассмотрено Биланюком, Сударшаном и Дешпанде в 1962 году — и их работы оставались в центре внимания до того, как Жирар Файнберг в 1967 году опубликовал похожие рассуждения (именно работа Файнберга вызвала дискуссию в «Тайм»).

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*