KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Калеб Шарф - Ошибка Коперника. Загадка жизни во Вселенной

Калеб Шарф - Ошибка Коперника. Загадка жизни во Вселенной

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Калеб Шарф, "Ошибка Коперника. Загадка жизни во Вселенной" бесплатно, без регистрации.
Перейти на страницу:

Очень трудно разобраться, почему планеты выбирают такое неблагоприятное направление вращения. Насколько нам известно, силы, воздействующие на звезды и их планеты, на ранних стадиях формирования небесных тел заставляют их вращаться и вокруг своей оси, и по орбите в одном направлении. Все остальное обрекает их на скорую динамическую катастрофу: если планеты пытаются двигаться против вращения протопланетного диска, им попросту трудно сформироваться. Откуда же берутся экзопланетные объекты, вращающиеся в противоположном направлении?

Сказать наверняка мы не можем – слишком мало мы знаем о многих членах лиги. Однако очень может быть, что эти планеты и вправду сформировались на гораздо больших расстояниях от звезд-родительниц и двигались «как положено», но затем игра гравитационных полей других планет вынудила их вращаться по очень вытянутым эллиптическим орбитам. В итоге такие орбиты могут встать перпендикулярно плоскости системы, а потом буквально перевернуться, и тогда планета будет двигаться в противоположном направлении – наподобие гимнастического обруча, который оказывается то одной, то другой стороной кверху. В конце концов приливная гравитационная тяга звезды «выправляет» эллиптическую орбиту, возвращает ей круглую форму и подтягивает планету поближе, где мы ее и видим.

Богатый жизненный опыт придает «горячим юпитерам» довольно интересные качества. Одни раздуваются до удивительных размеров, сверх всяких ожиданий, и в результате у них получается очень низкая плотность – иногда даже меньше, чем у воды. А есть и другие планеты-гиганты, которые из-за близости к источнику энергии и особенностей истории своего формирования претерпевают самые разные химические и структурные изменения.

Особенно это заметно по наружности – по верхним слоям их атмосфер. Среда там агрессивная, однако разобраться, какие химические компоненты в ней доминируют, практически невозможно, в отличие от прохладных, но едких и вонючих дуновений кристаллизованного аммиака и метана, которые мы находим на наших Юпитере и Сатурне. В предельных случаях температуры так высоки, что роль воды играют даже атомы железа – они формируют цикл, при котором пары создают облака, а потом проливаются тяжелыми металлическими каплями.

У некоторых «горячих юпитеров» атмосфера насыщена углеродом, а это подсказывает, что и недра у них, вероятно, нашпигованы углеродом в количествах, нам непривычных. Не исключено, что в ядрах таких планет-гигантов залегают алмазные слои – и даже есть некоторая вероятность, что существуют и другие планеты, более скромных размеров, в составе которых углерода больше, чем кремния: вполне допустимый, однако совсем не привычный для нас сценарий.

Вещества вроде газообразных оксидов титана и ванадия, существующие при таких условиях, также вносят свой вклад в облик внешних слоев атмосферы, которые иногда поглощают весь падающий на них свет. Такие планеты впитывают излучение сильнее, чем самый черный уголь. Планеты чернее ночи[100]. Только свет, который их заливает, такой яркий и сильный, что человеческий глаз все же уловит отраженное сияние – словно неумелый хамелеон пытается замаскироваться под чернильную черноту космоса.

«Горячие юпитеры» составляют обособленный класс планет и ни с кем не желают водиться. Однако рядом с ними расположилась еще одна компания – отпетые сорвиголовы, будущие «горячие юпитеры». За неимением официального названия я буду именовать их «планеты-икары»[101]. В отличие от «горячих юпитеров» орбиты у таких планет довольно большие, на один круг уходит несколько месяцев. И не круглые – в сущности, это другая крайность – узкий эллипс, один конец которого находится в десятках миллионов километров от звезды-родительницы, а другой попадает в зону досягаемости звездной «топки».

Температура на некоторых таких планетах в течение их года меняется в сотни раз. В дальних точках, где планеты движутся медленнее всего, условия достаточно терпимые. Однако когда планета приближается к своему солнцу и облетает его в ближайшей точке, температура повышается на семьсот градусов за несколько часов.

Каждый раз, когда планета приближается к звезде-родительнице, гравитационные приливы чуть-чуть замедляют ее. Пройдут миллионы лет, и планета откажется от такой нелепой орбиты – скорее всего, в результате гравитационных столкновений с другими планетами, – и постепенно перейдет на конфигурацию, больше напоминающую круглую орбиту «горячего юпитера». И когда-нибудь планета-икар примкнет к «горячим юпитерам», займет свое просторное кресло у камина, однако рано или поздно ее все равно ждет гибель в звездном пламени.

Рискуют жизнью, подбираясь слишком близко к звездам, не только планеты-гиганты, но и маленькие планеты из камня и металла, выстроившиеся в пределах десятков миллионов километров от звезд-родительниц. Некоторые из них в несколько раз массивнее Земли и, скорее всего, плотнее, и поверхность у них раскаляется до температур, заметно превышающих точку плавления всех мыслимых скальных пород.

Внешние слои таких планет, лишенные защитной оболочки атмосферы, как у гигантов, превращаются в океан лавы, в вечную геенну огненную. Даже металлические составы вроде оксида алюминия испаряются с такой поверхности и снова конденсируются в пылинки, которые сдувает звездный ветер в числе прочего пара и дыма, словно чад от космической плавильной печи[102].

Возможно, эти миры когда-то напоминали наш Нептун, планету, покрытую толстым одеялом из первобытного газа и льдов. Не исключено, что на нынешних орбитах они очутились в результате миграций, а здесь защитный покров развеялся и испарился. А может быть, они всегда представляли собой просто небесные тела из камня и металла, которым не повезло оказаться в нынешних суровых условиях.

* * *

Итак, на этом конце экзопланетной гостиной, поближе к камину, сидят самые разные планеты. Однако всего в нескольких шагах от них расположились объекты еще более пестрые и ошеломительно-незнакомые. Например, на соседних креслах сидит группа из девяти крупных планет[103], окруживших одну звезду.

Поначалу кажется, будто в них нет ничего особенно необычного: ведь и вокруг нашего Солнца вращается восемь крупных планет плюс многочисленные транснептуновые тела вроде Плутона. Так что числом девять нас не удивишь. Мы и не удивились бы, если бы не одно обстоятельство: все эти планеты вращаются вокруг своей звезды (так вышло, что это звезда примерно той же массы и того же возраста, что и Солнце) на расстояниях меньше радиуса орбиты Юпитера.

Все эти планеты, кроме двух, которые лишь немногим массивнее Земли, крупные и тяжелые – в 10, 20, даже в 60 раз массивнее нашего домика. И хотя все они плотно упакованы в ужасно тесную на первый взгляд систему, там остается место кое для чего еще. В подобных местах процессы формирования планет идут бесконтрольно – планеты выковываются одна за другой, умудряясь как-то избегать губительных последствий гравитационных взаимодействий между ними. Прямо-таки хочется подойти к таким системам и сказать: «Молодцы, молодцы!»

Теперь уже очевидно, что планетные системы и сами планеты необычайно разнообразны. Это разнообразие поразительно и само по себе, однако заставляет задавать серьезные вопросы и о том, как мы оцениваем собственную вселенскую заурядность, собственную обычность. Мы уже не просто не единственная планетная система на свете – все обстоит гораздо хуже: очень многие из этих новых планет и систем пренебрегают всеми нашими представлениями о нормальности. В некоторых системах у планет экзотические орбиты. Гравитационная динамика так организовала движение этих объектов, что периоды обращения, планетные годы, синхронизированы в виде отношений простых чисел. Например, внутренняя планета делает два оборота ровно за то время, за которое внешняя совершает один оборот. Как будто их движение – часть точно настроенного музыкального инструмента, который меняет высоту звука в соответствии с идеальной гармонией.

Этот феномен называется резонанс. Движения планет по орбитам в таких системах подчиняются этому ритму, поскольку планеты постоянно оказываются в одном и том же месте в пространстве через равные промежутки времени. А в результате гравитационные поля воздействуют друг на друга одинаково, ритмически – и поддерживают синхронизацию. Во время формирования и в ходе истории этих систем орбиты планет медленно менялись и оказались пойманы в это состояние, общее для всех планет и вызванное взаимным гравитационным притяжением, без надежды на побег.

Хотя многочисленные примеры такого рода орбитального резонанса налицо даже в нашей Солнечной системе, у нас им подчиняются почти исключительно движения мелких планет и спутников, а движение крупных планет не знает резонанса, по крайней мере, в такой степени, в какой ему подвластны некоторые экзопланетные системы. Например, орбиты малой планеты Плутон и гигантского Нептуна подчиняются резонансу – на два плутоновских года приходится три нептуновских. Специфическим закономерностям подчиняются и некоторые спутники вокруг гигантских планет. Ио, Европа и Ганимед – спутники Юпитера – подчиняются закономерности в 4, 2 и 1 оборот за один и тот же период. Однако никакие крупные планеты в нашей системе не состоят друг с другом в подобных отношениях, по крайней мере, сейчас, поскольку есть некоторые свидетельства, что когда-то, быть может, четыре миллиарда лет назад, Юпитер с Сатурном танцевали танго с ритмом один к двум.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*