KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Александр Петров - Гравитация От хрустальных сфер до кротовых нор

Александр Петров - Гравитация От хрустальных сфер до кротовых нор

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Александр Петров, "Гравитация От хрустальных сфер до кротовых нор" бесплатно, без регистрации.
Перейти на страницу:

Релятивистская теория гравитации возникла не в результате необходимости объяснить непонятные явления или данные наблюдений. Скорее это результат бурного развития физики того времени, построения электродинамики и СТО. Они как бы «притащили» за собой и общую теорию относительности (ОТО). С построением СТО стало ясно, что релятивистский принцип относительности должен распространяться не только на электромагнитные явления и механику, но и на гравитационные явления. А гравитация Ньютона этому принципу не удовлетворяет, поскольку она представлена нерелятивистским скалярным полем (для теории Ньютона это будет пояснено позже), распространяющимся с бесконечной скоростью, что противоречит релятивистским воззрениям.

Здесь нужно немного отвлечься и пояснить некоторые термины и понятия, без которых дальше не обойтись — это скалярное и векторное поля. Скалярное поле — это функция (величина), заданная в каждой точке пространства. Например, распределение температуры в некотором теле — это скалярное поле, значение которого определено в каждой точке тела, Векторное поле в 3–мерном пространстве задано, если в каждой его точке определена стрелка. В координатном представлении стрелка определяется тремя величинами, заданными для каждой точки этого пространства. Эти три значения функции в каждой точке представляются компонентами вектора. Примером векторного поля может служить распределение скоростей жидкости или газа, или напряжённостей электромагнитно го поля, о котором мы сейчас говорили. Аналогично скалярные и векторные величины задаются в 4–мерном пространстве–времени. О более формальном определении скалярного, векторного, а также тензорного полей см. Дополнение 1.

Первые попытки построения релятивистской теории гравитации

Сделай первый шаг и ты поймёшь, что не всё так страшно.

Сенека

Но вернёмся в до релятивистские времена XIX века, когда не было специальной теории относительности. Несомненно интерес к построению неньютоновских вариантов теории гравитации был вызван успехами электромагнетизма, Сам Максвелл, уже представивший миру уравнения электродинамики и воодушевлённый этим успехом, в 1865 году опубликовал работу, где предположил, что гравитация может быть описана уравнениями, подобными уравнениям электромагнетизма. Однако его вариант теории приводил к отрицательной энергии статического гравитационного поля и отрицательному потоку гравитационной энергии. Это его остановило, и он не стал развивать теорию дальше.

Были и другие попытки. Но мы не ошибёмся, если скажем, что первым учёным, представившим в 1893 году релятивистскую теорию гравитации, был английский математик и физик Оливер Хевисайд (1850–1925). Это теория векторного поля (похожая на электродинамику), инвариантная к преобразованиям Лоренца, хотя сами преобразования Лоренца ещё не были построены. В своей исследовательской деятельности Хевисайд очень много внимания уделял электродинамике. Поэтому его интерес и усилия, направленные на построение аналогичной теории гравитации, вполне объяснимы. Он придал уравнениям Максвелла современный явно лоренц–инвариантный вид — это 4 векторных дифференциальных уравнения (до этого использовались 20 уравнений с 12 неизвестными). А поэтому, тот факт, что он представил лоренц–инвариантные гравитационные уравнения, также не очень удивителен.

Сразу после создания специальной теории относительности, в 1905 году, Пуанкаре представил свои уравнения векторной гравитации, сохраняющиеся при преобразованиях Лоренца и подобные уравнениям Максвелла. Как модель, Пуанкаре рассматривает параллельное движение двух тел, неподвижных друг относительно друга. На основе преобразований Лоренца Пуанкаре выводит ряд инвариантов, сохраняющихся при этих преобразованиях, а затем рассматривает их возможное значение. В теории Пуанкаре получается, что полная сила гравитации имеет два компонента. Один из них, обычный, связан с расстоянием до притягивающего тела, а второй компонент определяется скоростью этого тела и является аналогом магнитной силы в электродинамике. Без второго компонента гравитационной силы нарушилась бы лоренц-инвариантность и известный уже результат о замедлении времени в движущихся системах отсчёта.

Позднее появились подобные работы Минковского и Лоренца и других авторов, целью которых было (как и в работе Пуанкаре) представить модифицированный закон Ньютона в лоренц–инвариантной форме. Это были теории векторного поля, распространяющегося в пространстве Минковского, речь об искривлении пространства–времени пока не шла вообще, Но векторные теории, включая и самую раннюю теорию Хевисайда, не могли объяснить сдвиг перигелия Меркурия, некоторые из теорий были внутренне противоречивы. Как и электродинамика, векторные теории предсказывают генерацию и распространение волн (гравитационных векторных), но в отличие от электродинамики эти волны должны переносить отрицательную энергию, что, конечно, недопустимо. Действительно, простая модель двух связанных тел в пустом пространстве Минковкого, излучая гравитационные волны, будет наращивать полную энергию!? Фактически вечный двигатель!? Такая ситуация возникает из‑за того, что тяготеющие заряды (массы) одного знака притягиваются, в отличие от зарядов в электродинамике. После появления ОТО и подтверждения нескольких её эффектов интерес к векторным теориям пропал. Со временем их перестали активно обсуждать, энтузиазм разрешать их противоречия угас.

Среди релятивистских теорий гравитации, возникших до общей теории относительности, нельзя не упомянуть скалярную теорию Эйнштейна и голландского физика Адриана Фоккера (1887–1972), представленную в 1914 году. Эта теория обобщала аналогичные предшествующие теории. Новаторским было то, что она была первой теорией, инвариантной относительно произвольных преобразований координат и описывала искривлённое пространство–время. Правда, она, как и другие релятивистские скалярные теории, не объясняла всех явлений, которые объясняет ОТО.

Принципы построения ОТО

Не природа …сообразуется с принципами, а наоборот, принципы верны лишь постольку, поскольку они соответствуют природе…

Фридрих Энгельс «Диалектика природы»

Пришло время начать рассказ собственно об общей теории относительности, о принципах её построения. Сначала вспомним факт равенства инертной и тяготеющей масс, установленный ещё Галилеем, затем подтверждённый Ньютоном и другими учёными, который мы уже подробно обсудили в главе 2. Сейчас это равенство прове

рено с относительной точностью 10-12— 10-13. Этот опытный факт Эйнштейн положил в основу общей теории относительности в качестве одного из ключевых принципов. Обычно его называют слабым принципом эквивалентности. Что из него следует?

Рис. 6.1. Движение в искривлённом пространстве

Если гравитационная масса точно равна инертной, то они могут быть заменены одна на другую как во втором законе Ньютона, так и в законе всемирного тяготения. Из этого следует, что ускорение тела, на которое действуют лишь гравитационные силы, не зависит от массы (или каких‑то других свойств этого тела)! А значит и траектория тела не зависит от его массы. Но тогда, если все тела в одной и той же точке пространства получают одинаковое ускорение, то это ускорение нужно связать не со свойствами тел, а со свойствами самого пространства в этой точке. Поскольку в общем случае траектории тел, движущихся в гравитационном поле других тел, искривлены, то логично предположить, что пространство, в котором есть гравитационное взаимодействие, также искривлено. Далее, СТО убедительно показала, что пространство и время являются единой физической реальностью, Поэтому описание гравитационного взаимодействия между телами нужно сводить к описанию искривлённого пространства-времени (рис. 6.1).

Но каково свободное движение тела, если пространство–время искривлено? Здесь разумно снова вернуться к СТО и первому закону Ньютона. В инерциальной системе отсчёта такие тела движутся прямолинейно и равномерно. В искривлённом пространстве аналогом прямых линий являются геодезические.

Рис. 6.2. Линии кратчайшего расстояния на сфере

Их теория подробно разработана математиками XIX века.

Основной вклад внёс немецкий математик Бернхард Риман (1826–1866). В искривлённом пространстве нет параллельных линий в понимании Евклида, сумма углов треугольника не равна 180°. Для примера рассмотрим поверхность Земли — это сфера, которая является 2–мерным пространством положительной кривизны. Что такое геодезическая на поверхности Земли? Это не прямая линия на карте, а дуга большого круга, который проходит через центр Земли (рис. 6.2). Именно с помощью такой дуги определяется кратчайшее расстояние между двумя точками на Земле. Сумма углов треугольника на поверхности Земли оказывается больше 180°.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*