KnigaRead.com/

Рафаель Роузен - Математика для гиков

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Рафаель Роузен, "Математика для гиков" бесплатно, без регистрации.
Перейти на страницу:

Парадокс береговых линий показывает, что хотя математика может предоставить измерения с необыкновенной точностью, она также может показать неопределенность, свойственную самой структуре реальности.

Побережье Канады – самая длинная в мире береговая линия, примерно 152 100 миль. Но вы только представьте, насколько она была бы длиннее, если бы ее измерили рулеткой.

1.3. Пузыри забавны и эффективны

Математическое понятие: объем

Представьте солнечный день в парке в самый разгар лета. Вполне возможно, там есть ребенок, который пускает мыльные пузыри. Неважно, пускаете ли вы их с помощью пластиковой палочки или большого обруча, сделанного из соломинок и веревки, мыльные пузыри – с их мерцающей поверхностью и шаровидной формой – это воздушное воплощение веселья.

Они также являются кладезем для математических размышлений. Математики уже давно знают, что если вы хотите поместить определенный объем воздуха в форму с наименьшей площадью поверхности, то эта форма – шар. А что, если вы хотите поместить два объема воздуха? Есть подозрение, что лучшим способом будет использовать двойной пузырь. Двойной пузырь – это форма, когда два пузыря соединены. (Вы, возможно, видели его, когда использовали пену для ванн.) Обычно пузыри отделены плоской мембраной; если один пузырь больше другого, то мембрана немного выпирает в сторону большего пузыря. В 19 году математики Джоэл Хасс, Майкл Хатчингс и Роджер Щлафли опубликовали статью, в которой доказали, что форма двойного пузыря – это наиболее эффективная форма для заключения двух одинаковых объемов воздуха. Но что, если два объема воздуха разные? Является ли двойной пузырь и в этом случае лучшим способом заключения воздуха в форму с наименьшей площадью поверхности?

Ответ положительный. В 2000 году математики Фрэнк Морган, Майкл Хатчингс, Мануэль Риторе и Антонио Рос опубликовали статью, в которой доказали, что двойной пузырь – это лучший способ заключения любых двух объемов воздуха в форму с наименьшей площадью поверхности. Они показали, что двойной пузырь имеет меньшую площадь поверхности, нежели другие бесчисленные формы, которые могут принять два соединенных между собой пузыря, включая тот странный случай, когда один пузырь обхватывает середину второго, как пончик. (В математике форма пончика имеет специальное название – тор, – которое возникает в подобласти топологии.) Более того, эта математическая команда доказала это без использования компьютера.

Это один из тех случаев, когда математика может использовать человеческий разум для исследования процессов, которые происходят в природе, чтобы разгадать их тайны. Все, что вам нужно, это бумага и карандаш.

Мыльные пузыри не лопаются дольше, чем пузыри из других веществ, как, например, из чистой воды, из-за эффекта Марангони, который описывает явление переноса вещества вдоль границы сред с разным поверхностным натяжением. Он назван в честь итальянского физика Карло Марангони, который опубликовал свою находку в 1865 году. По существу, когда дело касается мыла, эффект Марангони стабилизирует границы пузыря, делая его прочнее и долговечнее, нежели простой пузырь.

1.4. Скрывается ли математика за картинами Джексона Поллока?

Математическое понятие: фракталы

Джексон Поллок создал одни из самых культовых картин XX века, и некоторые исследователи утверждают, что их притягательность берет начало в математике. Если быть совсем точным, то ученые утверждают, что в своих картинах в технике разбрызгивания, которые Поллок закончил в 1940-х, он использовал фракталы, являющиеся геометрическими элементами, которые повторяют друг друга в больших и маленьких масштабах. Некоторые также утверждают, что работы Поллока зачаровывают, так как в них схвачены некоторые фрактальные качества окружающего мира. (Фракталы часто возникают в природе, например в текстуре облаков.)

Фракталы обладают размерностью физических величин, также как линии (одна величина) и мячи (три величины), но, в отличие от этих объектов, фракталы имеют величины, которые включают в себя дробную метрическую размерность. Вообще, математики подразделяют фрактальные величины по шкале от 0 к 3. Некоторые одномерные фракталы, такие, как сегментированная линия, имеют фрактальную размерность от 0,1 до 0,9. Двухмерные фракталы, такие, как контур береговой линии, имеют фрактальные размерности, колеблющиеся от 1,1 до 1,9. И трехмерные фракталы, такие, как кочан цветной капусты, имеют фрактальную размерность от 2,1 до 2,9.

В конце 1990-х физик Ричард Тэйлор заметил, что картины Поллока в технике разбрызгивания имеют фрактальные свойства, и предположил, что можно определить фрактальные характеристики его работ. Используя определенный вид анализа, человек предположительно мог бы выяснить, была ли та или иная картина написана Поллоком. Техника Тэйлора заключалась в том, чтобы отсканировать фотографии работ Поллока и перенести их на компьютер, а затем наложить сетку на цифровые изображения. Потом компьютер делал анализ картины, сравнивая рисунок как на всей картине, так и на ее маленьком участке в 2 см. Тэйлор обнаружил, что в картинах Поллока действительно есть фракталы. Например, было установлено, что одна картина – «Номер 14» – содержит фрактальную размерность 1,45, что соответствует размерности многих береговых линий.

Спустя годы, однако, исследователи из Университета Кейс Вестерн Резерв нашли доказательство, что техника Тэйлора не выявляла работы Поллока достоверным образом. Один докторант обнаружил, что незаконченный скетч, который она сделала с помощью фотошопа, прошел тест Тэйлора. Другое исследование показало, что две картины студентов Кейс Вестерна также прошли тест Тэйлора, в то время как две подлинные картины Поллока его не прошли. Исследователи также пришли к выводу, что этот тест не содержал достаточного количества данных, которые бы с точностью определяли принадлежность картин.

Пит Мондриан

За более явными примерами математики в искусстве обратитесь к работам Пита Мондриана, который в своих работах для большего эффекта использовал прямые линии и четырехугольники.

1.5. Снежинка Коха

Математическое понятие: фракталы

Есть что-то странное в фракталах (см. главу 1.4), это трудно объяснить, но легко показать на примерах. Одним из таких примеров является снежинка Коха, форма которой основана на кривой Коха, которая впервые была упомянута шведским математиком Нильсом Фабианом Хельге фон Кохом. Чтобы создать снежинку Коха, для начала нужно взять равносторонний треугольник (тот, у которого все стороны имеют одинаковую длину). Теперь поделите каждую сторону на три равные части. Используя среднюю часть каждой стороны, образуйте другой равносторонний треугольник остриями наружу так, что эта средняя часть станет его основанием. Продолжайте процесс бесконечно.

В результате такого процесса возникает странное явление: в итоге получается, что снежинка Коха имеет бесконечную длину. Каждый раз, когда вы создаете треугольник посередине одной из сторон снежинки, вы увеличиваете длину на одну треть. А так как процесс продолжается бесконечно, так и периметр снежинки увеличивается бесконечно.

Вот еще один странный результат: несмотря на то, что периметр увеличивается безгранично и становится все больше и больше, пространство, которое занимает снежинка, – хоть и постоянно увеличивается – имеет границу. Если представить круг, нарисованный вокруг изначального треугольника, то станет ясно, что снежинка Коха никогда не выйдет за пределы этого круга. Она может приблизиться к кругу, но никогда не выйдет за его пределы. Поэтому в каком-то смысле математический объект с бесконечной длиной окружен конечной площадью. Странно!

Фрактал Cesaro

Некоторые фракталы формируются не путем добавления, а путем удаления. Снежинка Коха создается путем добавления пиков к центру сегментов линий, а чтобы создать вид под названием фрактал Cesaro, нужно эти пики убрать. Результатом будет снежинка, которая будет выглядеть, будто ее пожевала акула. Однако в итоге чем сложнее они обе будут становиться, тем более похожими они станут для человеческого глаза.

1.6. Вы живете в четвертом измерении?

Математические понятия: бутылки Клейна, геометрия, топология

Бутылки Клейна странные. Позвольте мне объяснить как следует. Чтобы их понять, нужно представлять четвертое измерение – пространство, которое существует под прямым углом к нашему трехмерному пространству, – и хоть они и странные, бутылки Клейна могут содержать секрет судьбы нашей вселенной.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*