Дмитрий Гусев - 200 занимательных логических задач
30. Как известно, в любом атоме есть ядро, размеры которого меньше размеров самого атома. Если размер атомного ядра равен 10-12 см, а размер всего атома равен 10-6 см, следовательно, ядро по размеру меньше самого атома в 2 раза, ведь 12: 6 = 2. Верно ли это утверждение? Если нет, то во сколько раз атомное ядро меньше атома?
31. Собеседник просит вас задумать четное число. Далее он предлагает вам утроить его, затем взять половину полученного числа и опять утроить ее. После этого он просит поделить получившееся число на 9 и сообщить ему результат. После этого он называет число, которое было вами задумано. Как он это делает?
32. Каким образом возможно носить воду в решете, разумеется, ничем не затыкая его отверстий?
33. Из двух городов, находящихся на расстоянии 300 км один от другого одновременно выехали два велосипедиста навстречу друг другу со скоростью 50 км в час. Вместе с одним из велосипедистов из города вылетела муха, пролетающая в час 100 км. Она опередила первого велосипедиста, полетев навстречу второму. Встретив его, она сразу же полетела назад к первому. Повстречав его, опять полетела навстречу второму. Так она продолжала свои полеты до тех пор, пока велосипедисты не встретились. Сколько километров пролетела муха?
34. Диаметр Солнца больше диаметра Земли в 110 раз. Следовательно, и объем Солнца больше объема Земли приблизительно в 110 раз. Верно ли это утверждение? Если нет, то во сколько раз объем Солнца больше объема Земли?
35. Можно ли на самолете долететь до Луны? (Надо принять во внимание, что самолеты снабжены реактивными двигателями, как и космические ракеты, и работают на том же топливе, что и они).
36. У хозяйки был прямоугольный коврик размером 120 × 90 см. Два его противоположных угла истрепались, и их пришлось отрезать (см. рисунок). Однако хозяйке непременно хотелось, чтобы коврик был в форме прямоугольника. Она попросила мастера разрезать его на такие две части, чтобы из них можно было сшить прямоугольник, не теряя при этом, конечно же, ни кусочка материи. Как это возможно сделать?
37. Как известно, световой луч движется со скоростью 300 000 км/с и доходит от солнца до земли приблизительно за 8 минут. Таким образом, несмотря на огромную скорость, свету требуется некоторое время для преодоления огромных расстояний. Следовательно, если бы свет распространялся не с какой-то конечной скоростью (пусть и очень большой), а мгновенно, то мы наблюдали бы восход солнца всегда на 8 минут раньше, чем обычно. Например, если в какой-то день восход приходится на 6 часов утра, то при мгновенном распространении света, он имел бы место в 5 часов 52 минуты. Верно ли это рассуждение? Если нет, то какая ошибка в нем допущена?
38. Можно ли иголкой проколоть пятидесятикопеечную монету? Если да, то как это сделать?
39. Из Москвы в Петербург, расстояние между которыми приблизительно равно 650 км, вышел поезд со скоростью 70 км/час. В то же время из Петербурга в Москву вышел поезд со скоростью 120 км/час. Какой из этих поездов будет находиться ближе к Москве, когда они встретятся?
40. Стандартный стакан (200 гр.) наполнен водой до краев. Сколько булавок можно в него накидать, чтобы из стакана не вылилось ни капли воды?
41. У Петрова в кабинете висит портрет. Петров спрашивают: «Кто изображен на этом портрете?» Он запутанно отвечает: «Отец висящего есть единственный сын отца говорящего». Кто изображен на портрете?
42. Миссионер попал в плен к дикарям, которые посадили его в темницу и сказали: «Отсюда только два выхода – один на свободу, другой к гибели; выбраться тебе помогут два воина, – один говорит всегда правду, другой всегда лжет, но неизвестно, кто из них лжец, а кто правдолюбец; ты можешь задать любому из них только один вопрос». Какой вопрос надо задать, чтобы выбраться на свободу?
43. Каким образом можно определить, не пользуясь никакими измерительными приборами, на равные ли шесть отрезков разделена эта линия?
44. В плоскую широкую тарелку налито немного воды. В тарелке лежит монета, которая едва закрывается тонким слоем воды. Как, не выливая воду из тарелки, достать монету, но при этом не намочить руки?
45. Три миссионера и три каннибала должны пересечь реку в лодке, в которой могут поместиться только двое. Миссионеры должны соблюдать осторожность, чтобы каннибалы не получили на каком-то берегу численное преимущество. Как переплыть реку?
46. Если три дня назад был день, предшествующий понедельнику, то какой день будет послезавтра?
47. В монастыре висят две веревки из редкостного шелка. Они прикреплены к середине потолка на расстоянии одного метра друг от друга и достигают пола. Вор-акробат хочет украсть как можно больше веревки. Высота потолка 20 метров. Вор знает, что если он спрыгнет или упадет с высоты более 5 метров, то не сможет выбраться из монастыря. Поскольку лестницы у него нет, ему остается только лезть по веревке. Он нашел способ украсть веревки почти на всю длину. Как это сделать?
48. Девушка ехала в такси. По пути она так много болтала, что шофер занервничал. Он сказал ей, что очень сожалеет, но не слышит ни слова, – поскольку его слуховой аппарат не работает, он глух как пробка. Девушка замолчала, но, когда они доехали до места, поняла, что водитель над ней подшутил. Как она догадалась?
49. Вы находитесь в каюте стоящего на якоре океанского лайнера. В полночь вода была на 4 метра ниже иллюминатора и поднималась на полметра в час. Если эта скорость удваивается каждый час, то за какое время вода достигнет иллюминатора?
50. Собеседник предлагает вам задумать любое число. Далее он просит вас удвоить его и к полученному результату прибавить 5. Затем он предлагает умножить получившееся число на 5 и к результату прибавить 10. Потом он просит эту последнюю сумму умножить на 10 и сообщить ему результат. После этого он называет задуманное число. Как он это делает?
51. Две колеи рельсов идут параллельно, за исключением того места, где они проходят через тоннель, в котором по всей длине дорога становится одноколейной. Однажды днем один поезд вошел в тоннель с южного конца, а другой – с северного. Поезда шли в противоположных направлениях с большой скоростью, однако крушения не произошло. Почему?
52. Три путешественника прилегли отдохнуть в тени деревьев и уснули. Пока они спали, шутники вымазали углем их лбы. Проснувшись, и взглянув друг на друга, они начали смеяться, причем каждому из них казалось, что двое других смеются друг над другом. Внезапно один из них перестал смеяться, так как сообразил, что его собственный лоб тоже испачкан. Как он об этом догадался?
53. Из шести спичек постройте четыре равносторонних треугольника. Спички нельзя ни гнуть, ни ломать.
54. Сдвинув только одну их четырех спичек, сделайте квадрат. Спички нельзя ни гнуть, ни ломать.
55. С восходом солнца путешественник начал подниматься по узкой, извилистой тропинке на вершину горы. Он шел то быстрее, то медленнее, часто останавливаясь, чтобы отдохнуть. Проделав длинный путь, он достиг вершины только к закату солнца. Проведя ночь на вершине, с восходом солнца он отправился в обратный путь, по той же тропинке. Спускался он также с неравномерной скоростью, неоднократно отдыхая по дороге, и к закату солнца достиг подножия горы. Понятно, что средняя скорость спуска превышала среднюю скорость подъема. Есть ли на тропинке такая точка, которую путешественник проходил в одно и то же время суток, как во время подъема, так и во время спуска?
56. Из Москвы во Владивосток каждый день выходит поезд. Так же каждый день из Владивостока в Москву выходит поезд. Переезд длится 10 дней. Если вы выехали из Владивостока в Москву, то сколько поездов, идущих в обратном направлении, встретится вам во время поездки?
57. У скульптора есть десять одинаковых статуй. Он хочет, чтобы у каждой из четырех стен зала находилось по три статуи. Как их разместить?
58. Начертите, не отрывая карандаша от бумаги, следующие фигуры:
59. Один математик предложил торговцу такую сделку. Математик дает торговцу 100 рублей, а торговец дает математику взамен 1 копейку. Каждый следующий день математик дает торговцу на 100 рублей больше, чем в предыдущий, т. е. на второй день он дает ему 200 рублей, на третий – 300 рублей и т. д. А торговец дает математику взамен в два раза больше денег, чем в предыдущий день, т. е. на второй день он дает ему 2 копейки, на третий – 4 копейки, на четвертый – 8 копеек, на пятый – 16 копеек и т. д. Производить такой обмен они договорились в течение 30 дней. Кому из них этот обмен выгоден и почему?