KnigaRead.com/

Джеймс Глейк - Хаос. Создание новой науки

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Джеймс Глейк, "Хаос. Создание новой науки" бесплатно, без регистрации.
Перейти на страницу:

Хаос вызвал к жизни новые компьютерные технологии, специальную графическую технику, которая способна воспроизводить удивительные структуры невероятной сложности, порождаемые теми или иными видами беспорядка. Новая наука дала миру особый язык, новые понятия: фрактал, бифуркация, прерывистость, периодичность, аттрактор, сечение фазового пространства. Все это элементы движения, подобно тому как в традиционной физике кварки и глюоны являются элементарными частицами материи. Для некоторых ученых хаос скорее наука переходных процессов, чем теория неизменных состояний, учение о становлении, а не о существовании.

Как утверждают современные теории, хаос присутствует везде. Завихряется струйка сигаретного дыма, трепещет и полощется флаг на ветру, капли воды из подтекающего крана то одна за одной срываются вниз, то словно выжидают… Хаос обнаруживается и в капризах погоды, и в траектории движения летательного аппарата, и в поведении автомобилей в дорожной пробке, и в том, как струится нефть по нефтепроводу. Каковы бы ни были особенности конкретной системы, ее поведение подчиняется одним и тем же недавно открытым закономерностям. Осознание этого факта заставило менеджеров пересмотреть отношение к страховке, астрономов — под другим углом зрения взглянуть на Солнечную систему, политиков — изменить мнение о причинах вооруженных конфликтов.

Хаос проявляет себя на стыке областей знания. Будучи наукой о глобальной природе систем, теория хаоса объединила ученых, работающих в весьма далеких сферах. «Пятнадцать лет назад науке угрожал кризис всё возрастающей специализации, — заметил ответственный за финансирование исследований чиновник Военно-морского министерства США, выступая перед аудиторией математиков, биологов, физиков и медиков. — Удивительно, но эта тенденция превратилась в свою прямую противоположность благодаря феномену хаоса!» Хаос вызывает к жизни вопросы, которые плохо поддаются решению традиционными методами, однако позволяют сделать общие заключения о поведении сложных систем. Все первые теоретики хаоса — ученые, давшие начальный толчок развитию этой дисциплины, — имели нечто общее: у них был глаз на определенные закономерности, особенно такие, которые проявляются в разном масштабе в одно и то же время. У них выработалось особое чутье, позволявшее оценивать случайность и сложность, предвидеть внезапные скачки мысли. Верующие в хаос — а они иногда действительно называют себя верующими, новообращенными или евангелистами — выдвигают смелые гипотезы о предопределенности и свободе воли, об эволюции, о природе возникновения разума. Они чувствуют, что поворачивают вспять развитие науки, следовавшей по пути редукционизма — анализа систем как совокупностей составляющих их элементарных объектов: кварков, хромосом, нейронов. Они верят, что ищут пути к анализу системы как целого.

Наиболее страстные защитники новой науки утверждают, что грядущим поколениям XX век будет памятен лишь благодаря созданию теорий относительности, квантовой механики и хаоса. Хаос, заявляют они, стал третьей из революций, последовательно освобождавших физику из тенет ньютоновского видения мира. По словам одного физика, теория относительности разделалась с иллюзиями Ньютона об абсолютном пространстве-времени, квантовая механика развеяла мечту о детерминизме физических событий и, наконец, хаос развенчал Лапласову фантазию о полной предопределенности развития систем. Из этих трех открытий лишь теория хаоса применима к Вселенной, которую мы можем наблюдать и ощущать, к объектам, которые доступны человеку. Повседневный опыт и реальная картина мира стали уместным предметом исследований. Давно уже зрело ощущение, пусть и не выражавшееся открыто, что теоретическая физика далеко уклонилась от интуитивных представлений человека об окружающем мире. Насколько обоснована эта еретическая мысль, никому не известно, но теперь некоторые специалисты, считавшие, что физика рано или поздно загонит себя в угол, видят в хаосе выход из тупика.

Исследования хаоса произросли из непопулярных областей физической науки. Главным ее направлением в XX веке считалась физика элементарных частиц, которая исследовала основные слагающие элементы материи при все более высоких энергиях, малых масштабах и коротких отрезках времени и породила современные теории о природе физических взаимодействий и происхождении Вселенной. И все же некоторые молодые ученые чувствовали себя разочарованными. Прогресс замедлился, поиски новых частиц не имели успеха, а сама теория стала весьма запутанной. Недовольным казалось, что вершины сияющих абстракций физики высоких энергий и квантовой механики слишком долго доминировали в науке.

В 1980 г. космолог Стивен Хокинг, декан физического факультета Кембриджского университета, выразил мнение большинства ученых в обзорной лекции, посвященной развитию теоретической физики и названной «Не наступает ли конец физической теории?»: «Мы уже знаем физические законы, описывающие абсолютно все, с чем нам приходится сталкиваться в обычной жизни… И можно считать своеобразным комплиментом успехам теоретической физики тот факт, что нам приходится создавать сложнейшие приборы и тратить огромные деньги и усилия для того, чтобы поставить эксперимент, результаты которого мы не можем предсказать».

Однако Хокинг признал, что понимание законов природы в терминах физики элементарных частиц оставило без ответа вопрос о том, как применять эти законы к любым системам, кроме самых простейших. Предопределенность бывает двух видов: одна ситуация — когда две частицы, окончив свой бег между пластинами ускорителя, сталкиваются в пузырьковой камере, и совсем другая — в случае лоханки, наполненной мутной водой, или погоды, или человеческого мозга.

Хокингову физику, успешно собирающую Нобелевские премии и крупные ассигнования на дорогостоящие эксперименты, часто называли революционной. Временами казалось, что священный Грааль науки — Теория Великого Объединения, называемая также Теорией Всего Сущего, — вот-вот окажется в руках «революционеров». Физики проследили развитие энергии и материи во Вселенной всюду и везде, кроме кратчайшего момента ее зарождения. Но действительно ли физика элементарных частиц послевоенного периода была революцией?

Или же она лишь «наращивала мясо» на основу, заложенную Эйнштейном, Бором и другими создателями теории относительности и квантовой механики? Безусловно, достижения физики, от атомной бомбы до транзистора, изменили реальность XX века. Тем не менее круг вопросов, которыми занималась физика частиц, казалось, сузился. И сменилось не одно поколение, прежде чем в этой сфере взросла новая идея, изменившая взгляд на мир обычного, рядового человека.

Физика Хокинга могла исчерпать себя, так и не ответив на некоторые фундаментальные вопросы, поставленные природой: как зародилась жизнь, что такое турбулентность, как во Вселенной, подчиняющейся закону повышения энтропии и неумолимо движущейся ко все большему и большему беспорядку, может возникнуть порядок? Кроме того, многие объекты повседневной жизни, например жидкости и системы, подчиняющиеся законам классической механики, уже казались столь обыкновенными и хорошо изученными, что физики перестали ожидать от них каких-либо сюрпризов. Но вышло иначе.

По мере того как революция хаоса набирает обороты, виднейшие ученые без всякого смущения возвращаются к феноменам «человеческого масштаба». Они изучают не галактики, а облака. Приносящие прибыль компьютерные расчеты выполняются не на «креях», а на «макинтошах». Ведущие научные журналы рядом со статьями по квантовой физике публикуют исследования, посвященные загадкам движения мяча, который прыгает по столу. Многие простейшие системы, как оказывается, обладают исключительно сложным и непредсказуемым хаотическим поведением. И все же в подобных системах иногда самопроизвольно возникает порядок, т. е. порядок и хаос в них сосуществуют. Лишь новая научная дисциплина могла положить начало преодолению огромного разрыва между знаниями о том, как действует единичный объект — одна молекула воды, одна клеточка сердечной ткани, один нейрон — и как ведет себя миллион таких объектов.

Понаблюдайте за двумя островками водяной пены, кружащимися бок о бок у подножия водопада. Можете ли вы угадать, каково было их взаимное положение еще несколько минут назад? Вряд ли. С точки зрения традиционной физики, только что не сам Господь Бог перемешивает молекулы воды в водопаде. Как правило, получив сложный результат, физики ищут сложных объяснений, и если им не удается обнаружить устойчивую связь между начальным и конечным состоянием системы, они считают, что реалистичности ради в теорию, описывающую эту систему, должен быть «встроен» элемент случайности — искусственно генерированный шум или погрешность. Изучать хаос начали в 1960-х годах, когда ученые осознали, что довольно простые математические уравнения позволяют моделировать системы, столь же неупорядоченные, как самый бурный водопад. Незаметные различия в исходных условиях способны обернуться огромными расхождениями в результатах — подобное называют «сильной зависимостью от начальных условий». Применительно к погоде это выливается в «эффект бабочки»: сегодняшнее трепетание крыльев мотылька в Пекине через месяц может вызвать ураган в Нью-Йорке.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*