Яков Перельман - Занимательные опыты и задачи по физике
«Необычайные для Франции морозы, стоящие в течение нескольких дней, послужили причиной серьезного повреждения моста через Сену, в самом центре Парижа. Железный остов моста от мороза сжался, отчего вздулись и затем рассыпались кубики на покрывающей его мостовой. Проезд по мосту временно закрыт».
Высота Эйфелевой башни
Если теперь нас спросят, какова высота Эйфелевой башни, то прежде чем ответить: «300 метров», вы, вероятно, осведомитесь:
– В какую погоду – холодную или теплую? Ведь высота столь огромного железного сооружения не может быть одинакова при всякой температуре. Мы знаем, что железный стержень длиной 300 м удлиняется на 3 мм при нагревании его на один градус. Приблизительно на столько же должна возрастать и высота Эйфелевой башни при повышении температуры на 1°. В теплую солнечную погоду железный материал башни может нагреться в Париже градусов до +40, между тем как в холодный, дождливый день температура его падает до +10°. а зимою до 0°, даже до −10° (большие морозы в Париже редки). Как видим, колебания температуры доходят до 40 и более градусов. Значит, высота Эйфелевой башни может колебаться на 3 × 40 = 120 мм, или на 12 см (больше длины этой строки).
Прямые измерения обнаружили даже, что Эйфелева башня еще чувствительнее к колебаниям температуры, нежели воздух: она нагревается и охлаждается быстрее и раньше реагирует на внезапное появление солнца в облачный день. Изменения высоты Эйфелевой башни были обнаружены с помощью проволоки из особой никелевой стали, обладающей способностью почти не изменять своей длины при колебаниях температуры. Замечательный сплав этот носит название «инвар» (от латинского «неизменный»).
Итак, в жаркий день вершина Эйфелевой башни поднимается выше, чем в холодный, на кусочек, равный длине этой строки и сделанный из железа, которое, впрочем, не стоит ни одного лишнего сантима.
От чайного стакана к водомерной трубке
Раньше чем разлить чай по стаканам, опытная хозяйка, заботясь об их целости, не забывает положить в них ложки, особенно если они серебряные. Житейский опыт выработал вполне правильный прием. На чем он основан?
Уясним себе прежде, почему вообще стаканы трескаются от горячей воды.
Причина – неравномерное расширение стекла. Горячая вода, налитая в стакан, прогревает его стенки не сразу: сначала нагревается внутренний слой стенок, в то время как наружный не успевает еще нагреться. Нагретый внутренний слой тотчас же расширяется, наружный же остается пока неизменным и испытывает, следовательно, сильный напор изнутри. Происходит разрыв – стекло лопается.
Не думайте, что вы обеспечите себя от таких «сюрпризов», если обзаведетесь толстыми стаканами. Толстые стаканы – как раз самые непрочные в этом отношении: они лопаются чаще, нежели тонкие. Это и понятно: тонкая стенка прогревается быстрее, в ней быстрее устанавливаются равномерная температура и одинаковое расширение, – не так, как в толстом, медленно прогревающемся слое стекла.
Об одном только не надо забывать, выбирая тонкую стеклянную посуду: тонкими должны быть не только боковые стенки, но и дно стакана. При наливании горячей воды нагревается главным образом дно; если оно толсто, стакан растрескается, как бы тонки ни были его стенки. Легко лопаются также стаканы и фарфоровые чашки с толстым кольцеобразным выступом внизу.
Чем стеклянный сосуд тоньше, тем увереннее можно подвергать его нагреванию. Химики пользуются очень тонкими сосудами и кипятят в них воду прямо на горелке, не тревожась за целость сосуда.
Конечно, идеальной посудой была бы такая, которая вовсе не расширялась бы при нагревании. Чрезвычайно мало расширяется кварц: в 15–20 раз меньше, чем стекло. Толстый сосуд из прозрачного кварца может быть как угодно нагрет – он не лопнет. Можно смело бросить кварцевый сосуд, нагретый до красного каления, в ледяную воду, не опасаясь за его целость[14]. Это связано отчасти и с тем, что теплопроводность у кварца значительно больше, чем у стекла.
Стаканы лопаются не только при быстром нагревании, но и при резком охлаждении. Причина – неравномерное сжатие: наружный слой, охлаждаясь, стягивается и сильно сдавливает внутренний слой, еще не успевший охладиться и сжаться. Поэтому не следует, например, банку с горячим вареньем выставлять на резкий холод, погружать в холодную воду и т. п.
Вернемся, однако, к чайной ложечке в стакане. На чем основано ее предохраняющее действие?
Резкое различие в нагревании внутреннего и наружного слоя стенок бывает лишь тогда, когда в стакан сразу наливается очень горячая вода; вода теплая не вызывает резкой разницы в нагревании, следовательно, и в натяжении различных частей стекла. От теплой воды посуда не лопается. Что же происходит, если в стакан положена ложечка? Попав на дно, горячая жидкость, прежде чем нагреть стекло (которое плохо проводит тепло), успевает отдать часть своей теплоты хорошему проводнику – металлу; температура жидкости понижается; из горячей она делается теплой и потону почти безвредной. Дальнейшее же приливание горячего чая не столь уже опасно для стакана, так как он успел немного прогреться.
Словом, металлическая ложка в стакане (особенно если она массивна) сглаживает неравномерность нагревания стакана и тем предотвращает растрескивание стекла.
Но почему лучше, если ложка серебряная? Потому что серебро – хороший проводник тепла; серебряная ложка быстрее отнимает теплоту от воды, нежели медная. Вспомните, как серебряная ложка в стакане с горячим чаем обжигает руку! По этому признаку вы даже можете безошибочно определять материал ложки: медная ложка пальцев не обжигает.
Неравномерное расширение стеклянных стенок ставит под угрозу целость не только чайных стаканов, но и ответственных частей парового котла – его водомерных трубок, по которым определяется высота воды в котле. Внутренние слои этих стеклянных трубок, нагреваемые горячим паром и водой, расширяются больше наружных.
К натяжению, порождаемому этой причиной, прибавляется еще сильное давление пара и воды в трубке, отчего она легко может лопнуть. Чтобы предотвратить это, изготовляют иногда водомерные трубки из двух слоев стекла разных сортов: внутренний слой имеет меньший коэффициент расширения, нежели наружный.
Легенда о сапоге в бане
«Отчего зимою день короткий и ночь длинная, а летом – наоборот? День зимою оттого короткий, что, подобно всем прочим предметам, видимым и невидимым, от холода сжимается, а ночь от возжения светильников и фонарей расширяется, ибо согревается».
Курьезное рассуждение «войска Донского отставного урядника» из рассказа Чехова вызывает у вас улыбку своей явной несообразностью. Однако люди, которые смеются над подобными «учеными» рассуждениями, нередко сами создают теории, пожалуй, столь же несообразные. Кому не приходилось слышать или даже читать о сапоге в бане, не влезающем на разгоряченную ногу будто бы потому, что «нога при нагревании увеличилась в объеме»? Этот знаменитый пример сделался чуть не классическим, а между тем ему дают совершенно превратное объяснение.
Прежде всего, температура человеческого тела в бане почти не повышается; повышение температуры тела в бане не превосходит 1°, много 2° (на полке). Человеческий организм успешно борется с тепловыми влияниями окружающей среды и поддерживает собственную температуру на определенной точке.
Но при нагревании на 1–2° увеличение объема нашего тела так ничтожно, что его нельзя заметить при надевании сапог. Коэффициент расширения твердых и мягких частей человеческого тела не превосходит нескольких десятитысячных. Следовательно, ширина ступни и толщина голени могли бы увеличиться всего на какую-нибудь сотую долю сантиметра. Неужели же сапоги шьются с точностью до 0,01 см – толщины волоса?
Но факт, конечно, несомненен: сапоги трудно надевать после бани. Причина, однако, не в тепловом расширении, а в приливе крови, в разбухании наружного покрова, во влажной поверхности кожи и тому подобных явлениях, не имеющих ничего общего с тепловым расширением.
Как устраивались чудеса
Древнегреческий механик Герон Александрийский, изобретатель фонтана, носящего его имя, оставил нам описание двух остроумных способов, с помощью которых египетские жрецы обманывали народ, внушая ему веру в чудеса.
На рис. 74 вы видите пустотелый металлический жертвенник, а под ним скрытый в подземелье механизм, приводящий в движение двери храма. Жертвенник стоял снаружи его. Когда разводят огонь, воздух внутри жертвенника вследствие нагревания сильнее давит на воду в сосуде, скрытом под полом; из сосуда вода вытесняется по трубке и выливается в ведро, которое, опускаясь, приводит в действие механизм, вращающий двери (рис. 75). Изумленные зрители, ничего не подозревающие о скрытой под полом установке, видят перед собой «чудо»: как только на жертвеннике запылает огонь, двери храма, «внемля молитвам жреца», растворяются словно сами собой…