KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Калеб Шарф - Ошибка Коперника. Загадка жизни во Вселенной

Калеб Шарф - Ошибка Коперника. Загадка жизни во Вселенной

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Калеб Шарф, "Ошибка Коперника. Загадка жизни во Вселенной" бесплатно, без регистрации.
Перейти на страницу:

Гигантское небесное тело вроде Юпитера отражает свет Солнца и к тому же испускает из своих разогретых недр ровное инфракрасное излучение. Но максимальное количество электромагнитной энергии, исходящее от самой яркой планеты Солнечной системы, составляет всего одну миллиардную от излучения нашего Солнца. И планеты вроде Земли, горячее, но гораздо меньше Юпитера, выглядят так же жалко. Нам кажется, что Луна яркая, а на самом деле это просто оптический обман, вызванный нашим взаимным положением. Поверхность Луны на самом деле отражает всего процентов десять солнечного света, который на нее попадает – примерно столько же, сколько кусок угля. Нам кажется, будто она яркая, просто потому, что она близко, и потому, что солнечный свет на том расстоянии, где мы находимся, еще ярок.

Если бы мы взглянули на Солнечную систему с расстояния, измеряемого световыми годами, то планеты вроде Юпитера и Земли были бы не видны, их затмило бы сияние рассеянного солнечного света, словно пылинки при ослепительной фотовспышке. Чтобы непосредственно увидеть эти миры, нужны очень мощные телескопы и всевозможные оптические ухищрения, а подобные технологии пока что лишь маячат на нашем горизонте. Однако есть и другие способы увидеть иные планеты или ощутить их присутствие, пробившись за слепящую завесу звездных систем.

Об одном из подходов я уже упоминал, о нем подозревал еще Исаак Ньютон. Он отметил, что сами звезды тоже вращаются по орбите вокруг центра масс или точки равновесия системы. В отсутствие планет эта точка совпадает с центром звезды, но если планеты есть, их гравитационное поле смещает всю систему к какой-то другой точке. Более того, сама эта позиция зачастую непостоянна, поскольку планеты скользят по орбитам и оказываются в разных местах, и от этого точка равновесия тоже вынуждена сдвигаться.

Иначе говоря, если у звезды есть планеты, она колеблется, и ее колебания меняются со временем. Возможно, вы даже можете наблюдать это непосредственно – заметить, как звезда еле-еле заметно движется туда-сюда по небу. Однако если вы прибегнете к помощи эффекта Допплера[86], результат будет несколько лучше: о наличии планет вам подскажет изменение частоты – то есть цвета – светового излучения при движении звезды к нам и от нас.

Однако зарегистрировать это по-прежнему трудно, хоть плачь. Планета вроде Земли вызывает движение Солнца всего на десяток-другой сантиметров в секунду, и проявляется это маятникообразное движение лишь за период около года. Юпитер послужил бы нашей цели немного лучше. Он способен смещать Солнце примерно на 12 метров в секунду, однако рисунок этих колебаний размазан по десяти годам, за которые Юпитер совершает оборот по орбите. Нужно быть очень упорным и терпеливым наблюдателем, чтобы заметить его.

Мало этих трудностей: поверхность звезды – место очень неспокойное, пылающий и сияющий газ постоянно вздымается и опадает. Местные колебания вполне могут превосходить по силе более плавное и мерное движение, вызванное гравитацией планет, и еще сильнее смазать данные наблюдаемого солнечного света.

Задача эта не для слабонервных. Звездный свет, который улавливают мощные телескопы, нужно расщепить на тысячи составляющих его частот – примерно так свет преломляется в стеклянной призме и получается радуга. Астрономы должны выявить трудноразличимые маркеры – специфические спектральные свойства электронов, скачущих в атомах, которые составляют звезду, и пользоваться полученными величинами как линейкой. Поэтому сами маркеры нужно измерить необычайно точно, тщательно исследовать и на их основании произвести тщательную оценку скорости объекта весом в тысячи триллионов тонн, который движется, быть может, медленнее пешехода.

* * *

Искать планеты можно и другими способами, не менее сложными, поскольку опираются они как на умение, так и на везение. Иногда планетные системы ориентированы таким образом, что отсюда, с Земли, видно, как планеты вращаются вокруг родительских звезд, заслоняют их[87] и перегораживают несколько долей процента света звезды, доходящего до нас. Если это заметить – а потом заметить еще раз, при следующем витке по орбите, и при следующем тоже, – можно сделать вывод о наличии этих крошечных пятнышек и даже об их размерах.

Реже признаком наличия планет становятся искажения пространства-времени вокруг звездных систем (к тому же их труднее регистрировать и интерпретировать): гравитационные поля искривляют световые лучи – следствие релятивистской природы Вселенной. Если свет более далекой звезды проходит в нужной точке звездной системы, оказавшейся между нами, он ведет себя так, словно в пространстве подвешена линза. Этот свет ненадолго усиливается и вспыхивает, и вспышку видно несколько дней, а затем оптическая конструкция рассыпается из-за круговорота небесных тел. Гравитационную линзу[88] может создавать и одинокая звезда, но стоит добавить планеты, и характер вспышки меняется, а по его изменениям можно сделать выводы об этих планетах, их орбитах и массах.

Все эти способы изобилуют трудностями, и долгая история попыток обнаружить планеты вокруг звезд полна неудач и обманутых надежд. Однако ко второй половине ХХ века астрономические методы достигли такого уровня, что целый ряд отважных и упорных ученых[89] сочли, что обладают достаточно реалистичной базой для обнаружения крошечных темных крупиц-планет вокруг далеких звезд. То есть было показано, что планеты все-таки существуют – конечно, это и раньше считалось весьма вероятным, однако оставались досадные сомнения. Но вот что интересно: большинство этих ученых пребывали в убеждении, что если они что-то и найдут, это будет что-то донельзя скучное. В сущности, они представляли себе копии нашей Солнечной системы, знакомые разновидности планет в знакомых сочетаниях. Хотя современные писатели-фантасты постоянно изобретали что-то из ряда вон выходящее, ничуть не хуже авторов «Тысячи и одной ночи», а то и куда более сенсационное, исследователи не искали подобные планеты. Гипотетические планеты и орбиты, которые представляли себе астрономы, ничем особым не отличались – все они были более или менее похожими копиями нашего непосредственного окружения.

А достаточно смелые гипотезы держались на периферии – отчасти именно из-за вполне понятного научного консерватизма. К тому же нас довольно долго сбивало с толку неверное толкование принципа Коперника. Раз мы не занимаем никакого особого положения в центре мироздания, разумно предположить, что в других местах все точно так же, как у нас. Если мы всего-навсего заурядная планетная система при заурядной звезде, резонно ожидать, что остальные планетные системы похожи на нас. В итоге к концу ХХ века мы, в сущности, высматривали планеты вроде Юпитера или Сатурна. Это должны были быть массивные небесные тела, медленно вращающиеся по большим орбитам и обеспечивающие очень вялый, но все же заметный танец при движении их звездных родительниц. А найти планеты размером с Землю нечего было и думать – в то время чувствительность оборудования этого не позволяла, хотя не оставалось сомнений, что конечной целью любого ученого, пусть и невысказанной, были именно такие миры.

Кроме того, наша Солнечная система оставалась единственным лекалом для теорий формирования планет. Научные представления о происхождении планет из газа и пыли в межзвездном пространстве, разумеется, менялись с течением веков. Однако ко второй половине ХХ века был выявлен механизм, с которым научный мир в целом согласился. Как я уже писал, налицо были веские физические причины, почему планеты могут формироваться из огромного газово-пылевого диска, окружающего сжимающееся, слипающееся вещество туманности, из которого рождается звезда. А у Солнечной системы весьма определенная структура: мелкие каменистые планеты формируются ближе к горячему Солнцу, а большие газово-ледяные отстоят от него дальше. Таков был и остается образец, по которому теоретически формируются новые миры.

* * *

Выйти за рамки этих представлений было очень трудно. Есть даже красивое эмпирическое численное правило, так называемое правило Тициуса-Боде[90], выведенное еще в XVIII веке, которое предсказывает расстояния планет от Солнца на основании всего лишь простой алгебраической последовательности. Это последовательность 0, 3, 6, 12, 24, 48, 96, 192, в которой каждый член после 3 вдвое больше предшествующего. «Волшебная» формула состоит в том, чтобы прибавлять к каждому члену 4, а затем делить на 10 – и получается среднее расстояние от планеты до Солнца в астрономических единицах (одна астрономическая единица – это расстояние от Земли до Солнца). Числа, которые получаются по этой формуле, близки к реальности, но все же не точны. Эта закономерность наводит на мысль о наличии какого-то более глубокого принципа, своего рода фундаментального, возможно, даже универсального закона, по которому формируются и выстраиваются планеты. Так и есть – если не вдумываться.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*