KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Рудольф Киппенхан - Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд

Рудольф Киппенхан - Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Рудольф Киппенхан, "Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд" бесплатно, без регистрации.
Перейти на страницу:

Почему на Солнце мало лития?

Наша компьютерная модель не может объяснить всех фактов. Когда астрономы изучали химический состав солнечной поверхности, то оказалось, что на Солнце чрезвычайно редко встречается (по сравнению с концентрацией на Земле) еще один элемент: литий. Этот элемент относится к числу наиболее легких в периодической системе: ядро атома лития состоит из трех протонов и четырех нейтронов. Такие атомы встречаются на Солнце крайне редко. По сравнению с его распространенностью на Земле, а также по сравнению с концентрацией в метеоритном веществе, которое попадает на Землю из мирового пространства, один килограмм солнечного газа содержит в 100 раз меньше лития. Может быть, этот элемент тоже разрушается при высоких температурах в нижней части конвективной зоны?

Действительно, литий может поглощать протон и распадаться на два атома гелия, как показано на рис. 5.3. Но температура в один миллион градусов, которая наблюдается в нижней части конвективной зоны, недостаточна для этой реакции. Разрушение лития происходит существенно глубже, примерно при температуре три миллиона градусов. Во всех компьютерных моделях, существующих к настоящему времени, конвективная зона не проникает ниже слоя с температурой один миллион градусов. Поэтому наша модель не может объяснить малое содержание лития на Солнце. Может быть, литий отсутствовал с самого начала? Это чрезвычайно маловероятно. В настоящее время считается, что Солнце, планеты и метеориты возникли из одного и того же вещества, которое первоначально имело один и тот же химический состав. Мы еще вернемся к этому вопросу, когда будем обсуждать возникновение звезд. Куда же девался литий на Солнце? Как объяснить этот парадокс?

Рис. 5.3. При температурах около трех миллионов градусов атомы лития превращаются в звездных недрах в атомы гелия при участии ядер водорода.

Выход из положения есть: в промежуток времени между образованием звезд и началом ядерных реакций превращения водорода в гелий конвективная зона на Солнце проникала существенно глубже, чем теперь. Она достигала областей с температурами по меньшей мере в три миллиона градусов. В это время большая часть лития из внешних слоев Солнца могла проникнуть в глубину и разрушиться. К этому вопросу мы еще вернемся в гл. 12. Прежде мы должны узнать, что было до возникновения «молодого» Солнца? Теперь продолжим наше изучение стареющего Солнца, а годы его юности рассмотрим позже.

Судьба звезд, подобных Солнцу, после полного выгорания водорода, а также путь развития, показанный на рис. 5.1, были изучены в 50-е годы. При решении этих задач впервые широко использовались электронные вычислительные машины. Прежде чем рассмотреть полученные данные, я хотел бы отвлечься и совершить небольшой экскурс в историю, с которой у меня связаны некоторые личные воспоминания.

1955 г. — прорыв в область красных гигантов

В этом году была опубликована работа двух знаменитых астрофизиков своего времени. Эта работа была столь объемна, что ее не удалось напечатать в обычном номере «Астрофизического журнала». Она была опубликована в серии дополнительных выпусков. Одним из ее авторов был Фред Хойл. Хойл в это время занимал в Кембридже кафедру Эддингтона и уже написал много важных астрофизических работ, в том числе о возникновении химических элементов в недрах звезд. Кроме того, в свободное время он писал научно-фантастические романы. Его книга «Черное облако» была переведена на многие языки мира. На немецком радио по этой книге была даже поставлена радиопьеса. Другим автором вышедшей в «Астрофизическом журнале» работы был Мартин Шварцшильд. Когда умер его отец, астроном Карл Шварцшильд о нем речь пойдет позже, — Мартину было всего четыре года. Уже мальчиком он интересовался астрономией. Позже Шварцшильд вспоминал, что прежде чем избрать карьеру астронома, он долгое время мечтал стать молочником. Мартин Шварцшильд говорил, что он стал астрономом, как и его отец, только потому, что у него не хватило оригинальности выбрать другую профессию. Он получил степень доктора в Гёттингенском университете в 1935 г. Говорят, что семьи Шварцшильдов и Ротшильдов когда-то жили в одном и том же переулке Франкфуртского гетто. Поэтому для юного астронома было жизненно важным как можно быстрее покинуть Третий рейх. Его брат, оставшийся тогда в Германии, вынужден был позже покончить жизнь самоубийством. Через Норвегию Мартин Шварцшильд попал в США, а после войны стал профессором в Принстоне.

В послевоенные годы в группе Шварцшильда в Принстонском университете была начата работа по конструированию моделей строения звезд главной последовательности. Сотрудники Шварцшильда попытались изучить, что происходит со звездами, когда в их недрах кончается водород и прекращается ядерная реакция образования гелия. В 1955 г. была успешно закончена большая работа, в которой впервые удалось рассчитать, как звезды главной последовательности постепенно превращаются в красные гиганты.

В те годы астрофизики впервые начали широко применять в своих расчетах вычислительные машины. Хойлу и Шварцшильду нужен был компьютер, чтобы смоделировать процесс развития звезд. Немного позже и у меня возникла такая необходимость.

Осенью 1957 г. мы со Штефаном Темешвари (1915–1984) ночами просиживали на Беттингерштрассе в Гёттингене у вычислительной машины G2. Так назывался компьютер, сконструированный и собранный Хайнцем Биллингом и его сотрудниками в Физическом институте им. Макса Планка. В те времена вычислительную машину еще нельзя было просто купить в магазине, научные сотрудники сами изготовляли компьютеры. Сегодня обычный настольный компьютер очень часто обладает более широкими возможностями, чем любая машина, которая в те времена занимала целую комнату и работала на лампах. Людвиг Бирман, который в то время руководил астрофизическим отделением института, предложил нам с помощью этой машины решить уравнения Хойла и Шварцшильда. При этом мы должны были использовать придуманный нами улучшенный способ расчета.

Если вспомнить, как мы тогда работали, и сравнить с сегодняшними методами исследований, то станет ясно, какие произошли огромные изменения. Чтобы получить модель внутреннего строения звезды, надо было задать пробные значения светимости и температуры поверхности, а затем шаг за шагом двигаться от внешних слоев звезды ко внутренним. Когда расчет подходил к центру звезды, требовалось проверить, имеют ли наши решения смысл, или, говоря на языке математики, отвечают ли они внутренним граничным условиям. После этого надо было повторять весь расчет снова, используя улучшенные значения для светимости и температуры поверхности и надеясь, что на этот раз внутренние граничные условия будут удовлетворяться лучше. Интегрирование от поверхности к центру звезды необходимо было многократно повторять до тех пор, пока не получалось разумное решение. Чтобы получить каждое решение, мы совершали целое «путешествие» к центру звезды. Оно продолжалось пять часов, и можно было только надеяться, что вычислительная машина будет работать все это время без ошибок. Иначе приходилось все начинать сначала. Сегодня вычислительная машина того же института (которая, кстати сказать, установлена в Мюнхене) получает окончательное решение в течение нескольких секунд. Такая скорость решения задачи объясняется не только появлением новых мощных компьютеров, это прежде всего заслуга группы исследователей из Беркли.

Об их работах речь пойдет в следующей главе. А мы пока посмотрим, что происходит со звездами главной последовательности, когда в них начинает выгорать водород. Такая же судьба ожидает и наше Солнце, а ведь от него зависит и будущее жизни на нашей планете.

Что произойдет в будущем с нашим Солнцем?

Что же будет дальше? Что произойдет, когда все больше водорода будет выгорать и в центре Солнца будет накапливаться гелий? Модельные расчеты показывают прежде всего, что в ближайшие 5 миллиардов лет практически ничего не изменится. Солнце будет медленно (как показано на рис. 5.1) перемещаться вверх по своему пути развития на диаграмме Г — Р. Светимость Солнца при этом будет постепенно повышаться, а температура на его поверхности вначале станет чуть выше, а затем начнет медленно снижаться. Но все эти изменения будут невелики.

Через 10 миллиардов лет после начала горения водорода светимость Солнца будет всего в два раза выше нынешней. К этому времени человечество (если оно еще будет существовать на Земле) уже давно начнет испытывать климатические трудности. Однако потом станет еще хуже. А пока диаметр Солнца всего в два раза превышает нынешний.

Между тем, в недрах Солнца к этому времени уже произойдут существенные изменения. В центре весь водород уже будет исчерпан. Центральная область целиком заполнена гелием (см. рис. 5.2, в). На этом рисунке изображена модель Солнца в возрасте 12 миллиардов лет. В центре не происходит ядерных реакций, поскольку весь водород уже выгорел, а для превращения гелия в углерод (см. рис. 3.4) температура слишком мала. Только на поверхности этого гелиевого шара, там, где гелий граничит со слоем, богатым водородом, еще происходит сгорание водорода. Постепенно выгорает и этот водород, а радиус гелиевой сферы в центре Солнца увеличивается. Если вначале у нашего Солнца было ядро, где происходили ядерные реакции превращения водорода в гелий, то теперь горение водорода происходит в тонкой сферической оболочке, которая постепенно расширяется и перемещается во внешние области, все еще богатые водородом. С течением времени диаметр гелиевого шара в центре Солнца становится все больше. На диаграмме Г-Р Солнце перемещается направо вверх, в область красных гигантов (как показано на рис. 5.1). Солнечный шар становится все больше и одновременно все холоднее. Через 13 миллиардов лет размеры Солнца станут примерно в 100 раз больше, чем сегодня, а светимость увеличится в 2000 раз. В то же время температура поверхности существенно снизится. Она будет составлять всего 4000 градусов, т. е. на 1800 градусов меньше, чем теперь.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*