KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Нил Тайсон - Смерть в черной дыре и другие мелкие космические неприятности

Нил Тайсон - Смерть в черной дыре и другие мелкие космические неприятности

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Нил Тайсон, "Смерть в черной дыре и другие мелкие космические неприятности" бесплатно, без регистрации.
Перейти на страницу:

Потом такая планета остывает, и если впоследствии она разрушается, ну, скажем, в результате столкновения с кем-то из соседок, то фрагменты обеих будут вращаться по орбите вокруг Солнца более или менее по тем же траекториям, что и погибшие планеты. Фрагменты будут состоять в основном из камня, потому что получились из толстых внешних каменистых слоев двух дифференцированных небесных тел, однако небольшая их доля окажется цельнометаллической. Именно таково распределение состава между астероидами. Более того, кусок железа не может возникнуть прямо посреди межзвездного пространства, поскольку отдельные атомы железа, из которого он состоит, рассеяны по газовым облакам, из которых формируются планеты, а эти облака состоят в основном из водорода и гелия. Чтобы атомы железа нашли друг друга и сконцентрировались, необходимо, чтобы сначала возникло жидкое тело, которое впоследствии дифференцируется.

* * *

Но откуда же астрономы-специалисты по Солнечной системе выяснили, что большинство астероидов главного пояса состоит из каменистых пород? Как они вообще хоть что-то узнают об астероидах? Главный показатель – альбедо астероида, его способность отражать свет. Астероиды сами по себе не излучают свет, они лишь поглощают и отражают солнечные лучи. Как ведет себя 1744 Харриет – отражает или впитывает инфракрасные лучи? А видимый свет? А ультрафиолет? Разные материалы впитывают и отражают разные части светового спектра по-разному. Если досконально изучить спектр солнечного света (а астрофизики так и делают), а потом тщательно пронаблюдать, каков спектр солнечного света, отражаемого от того или иного астероида (а астрофизики так и делают), то можно выяснить, как изменился первоначальный солнечный свет, и, следовательно, определить, из каких материалов состоит поверхность астероида. А по этим материалам можно узнать, какую долю падающего света отражает поверхность. Эта цифра и расстояние до астероида позволяют рассчитать его размеры. В конечном итоге отталкиваешься от того, насколько ярко блестит астероид в небе, однако он может быть, например, очень большим, но совсем тусклым, или, наоборот, маленьким, но с очень высоким коэффициентом отражения, или ни то ни другое. Поэтому, если не знать его состав, нельзя получить ответ, просто измерив яркость.

Этот метод спектрального анализа поначалу привел к простой классификации – все астероиды поделили на три типа: богатые углеродом астероиды С-типа (от слова «Carboneum» – «углерод»), богатые кремнием астероиды S-типа («Silicium» – «кремний») и металлические астероиды М-типа. Однако в результате более точных измерений возник целый алфавит из доброго десятка классов, в каждый из которых входят астероиды, состав который обладает какой-то конкретной и важной особенностью. И тогда стало понятно, что у многих астероидов несколько предков среди небесных тел, а не одна планета-мать, которая когда-то разбилась вдребезги.

Если знать состав астероида, можно с некоторой уверенностью судить о его плотности. Любопытно, что некоторые оценки размера и массы астероидов свидетельствуют о плотности меньшей, чем у камня. Логично предположить, например, что у астероидов внутри могут быть пустоты или что их состав неравномерен. Что же к ним подмешано? Может быть, лед? Едва ли. Пояс астероидов находится от Солнца на таком расстоянии, что все ледяное – вода, углекислый газ, аммиак – с плотностью меньше камня должно было давно испариться. Возможно, речь действительно идет о пустотах, и астероиды состоят не только из камней, но и из рыхлого космического мусора, слипшегося с камнями воедино.

Первые подтверждения этой гипотезы были получены на основе анализа изображений шестидесятикилометрового продолговатого астероида под названием Ида, сделанных при помощи космического зонда «Галилео», когда он пролетал мимо нее 28 августа 1993 года. Полгода спустя примерно в 100 километрах от центра Иды было замечено пятнышко, которое оказалось спутником, имеющим форму гальки и диаметром почти два километра! Спутник назвали Дактиль, и это первый зарегистрированный спутник, вращающийся вокруг астероида. Можно ли сказать, что спутники у астероидов – редкость? Если у астероида в принципе может быть один спутник, следует из этого, что их может быть десять или сто? Иными словами, вдруг некоторые астероиды представляют собой груды камней?

Ответ, разумеется, да. Некоторые астрофизики даже говорят, что эти «кучи щебня» – уже появился такой научный термин (в отличие от геологов, астрофизики предпочитают передавать суть, а не нагромождать слоги) – встречаются довольно часто. Один из ярких примеров астероида такого типа – это Психея, общий диаметр которой составляет около 200 км, а коэффициент отражения большой, что заставляет предположить, что она металлическая. Однако средняя плотность Психеи свидетельствует о том, что она более чем на 70 % состоит из пустот.

* * *

Когда изучаешь объекты, которые «живут» вне главного пояса астероидов, довольно быстро наталкиваешься на прочих бродяг Солнечной системы – на астероиды-убийцы, орбиты которых пересекаются с орбитой Земли, на кометы и сонмища спутников. Кометы – это космические снежки. Обычно они имеют в поперечнике всего несколько километров и состоят из смеси замерзших газов, пыли, льда и всевозможных частиц. В сущности, они могут быть просто астероидами, покрытыми коркой льда, который никогда полностью не испаряется. Вопрос о том, чем считать тот или иной обломок – астероидом или кометой – сводится к тому, где он возник и где побывал. До 1687 года, когда Ньютон опубликовал свои «Начала», где сформулировал закон всемирного тяготения, никто и не представлял себе, что кометы живут и странствуют среди планет и обращаются по сильно вытянутым орбитам, то навещая Солнечную систему, то удаляясь из нее. Обледенелые обломки, которые сформировались на задворках Солнечной системы – как в поясе Койпера, так и за ним, – сохраняют ледяной покров, а если их обнаруживают на характерной вытянутой орбите по пути к Солнцу, когда они оказываются в пределах орбиты Юпитера, за ними виден разреженный, но хорошо заметный «хвост» из водяного пара и других летучих газов. В конце концов, побывав во внутренней части Солнечной системы столько раз, сколько потребуется (может быть, и сотни и даже тысячи), подобная комета растеряет весь свой лед, и останется только каменная глыба. В сущности, многие, если не все, астероиды, орбиты которых пересекаются с орбитой Земли, возможно, представляют собой «истощенные» кометы, чье твердое ядро продолжает преследовать нас.

А есть еще метеориты – летающие космические обломки, которые падают на Землю. Поскольку все метеориты, как и астероиды, состоят из камня, иногда с включениями металла, совершенно очевидно, что их родина – пояс астероидов. Специалистам по геологии планет, изучающим известные астероиды, число которых постоянно растет, стало ясно, что не все орбиты возникают в главном поясе астероидов.

Как любит напоминать нам Голливуд, рано или поздно какой-нибудь астероид (или комета) столкнется с Землей, однако то, что это реальная угроза, мы поняли лишь в 1963 году, когда астрогеолог Юджин М. Шумейкер убедительно доказал, что Аризонский метеоритный кратер Барринджера близ города Уинслоу, возникший 50 000 лет назад, мог быть только результатом падения метеорита, а не вулканической активности или воздействия какой-либо иной геологической силы земного происхождения.

Как мы еще увидим в части 6, открытие Шумейкера вызвало новую волну интереса к пересечениям орбиты Земли с орбитами астероидов. В 1990 годы космические агентства начали отслеживать объекты, близкие к Земле, – кометы и астероиды, чьи орбиты, как деликатно выражаются в НАСА, «позволяют им оказаться по соседству от Земли».

* * *

Важнейшую роль в жизни удаленных от нас астероидов и их собратьев играет планета Юпитер. Гравитационный баланс между Юпитером и Солнцем привел к скоплению семейств астероидов на 60 градусов впереди и на 60 градусов позади Юпитера на его орбите вокруг Солнца, так что, если соединить их прямыми линиями с Юпитером и с Солнцем, получится два равносторонних треугольника. Если измерить эти треугольники, получится, что астероиды находятся на расстоянии 5,2 а. е. и от Юпитера, и от Солнца. Эти пленные небесные тела именуются «троянскими астероидами» и находятся в так называемых точках Лагранжа. Как мы увидим в следующей главе, эти точки – словно магниты, которые притягивают астероиды, попадающие в сферу их притяжения.

Кроме того, Юпитер отводит много комет, которые направляются к Земле. Большинство комет живет в поясе Койпера, который начинается за орбитой Плутона и расстилается очень далеко. Однако если у кометы хватает дерзости пройти близко к Юпитеру, ее швыряет в другую сторону. Если бы не Юпитер, стоящий на часах, кометы бомбардировали бы Землю гораздо чаще. Более того, принято считать, что облако Оорта – обширная популяция комет на самой границе Солнечной системы, получившее название в честь Яна Оорта, голландского астронома, который выдвинул гипотезу о его существовании, – состоит из комет из пояса Койпера, которые вышвырнул вон Юпитер. А орбиты комет из облака Оорта тянутся на половину расстояния до ближайших звезд.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*