Рэймонд Смаллиан - Как же называется эта книга?
98. Как выбрать невесту на острове Бахава?
На этот раз вы переноситесь на остров Бахава, где живут рыцари, всегда говорящие только правду, лжецы, которые всегда лгут, и нормальные люди, говорящие то правду, то ложь. Напомним, что на острове Бахава женщины во всем пользуются равными правами с мужчинами. Среди женщин, как и среди мужчин, имеются рыцари, лжецы и нормальные люди. На вас как на иностранца не распространяются законы острова и, в частности, королевский указ, повелевающий рыцарю вступать в брак только с рыцарем, а лжецу — только с лжецом: вы вольны выбирать себе в жены островитянку, кем бы она ни была.
Предположим, что вам надлежит выбрать себе в невесты одну из трех сестер A, B, C. Известно, что одна из них рыцарь, одна — лжец и одна — нормальный человек. Известно также, что нормальная сестра (нечего сказать, в хорошенькое положение вы попали!) — оборотень, а две другие сестры не оборотни. Предположим, что вы не откажетесь взять в жены лжеца (или рыцаря), но жениться на оборотне даже для такого покладистого человека, как вы, — это уж слишком! Чтобы определить, кто из сестер кто, вам разрешается задать им один-единственный вопрос, на который можно ответить либо «да», либо «нет».
Какой вопрос вы бы задали?
В. Да, вы не виновны, но как это доказать?
Теперь мы переходим к серии особенно увлекательных задач. Действие во всех этих задачах происходит на острове рыцарей, лжецов и нормальных людей. Вы сами также один из уроженцев и постоянных обитателей этого острова.
На острове совершено преступление. По совершенно непонятным соображениям подозрения пали на вас. Вы задержаны и предстали перед судом. На судебном заседании вам разрешают произнести одну-единственную фразу. Ваша задача — убедить присяжных в том, что вы не виновны.
99.
Предположим, что преступник — лжец (о чем известно суду) и вы также лжец (о чем суду не известно), но тем не менее не виновны в совершении инкриминируемого вам преступления. Вам предоставляется право произнести одну-единственную фразу. Ваша цель — убедить присяжных не только в том, что вы не лжец, но и в том, что вы не виновны. Что бы вы сказали?
100.
Предположим, что вы находитесь в такой же ситуации, как и в предыдущей задаче, с единственным отличием: теперь вы виновны. Какое заявление вы бы сделали на суде, чтобы убедить присяжных (людей вполне разумных и способных рассуждать логично) в своей невиновности?
101.
В этой задаче мы будем предполагать, что преступник — рыцарь. (Наше допущение внутренне непротиворечиво: чтобы совершить преступление, вовсе не обязательно лгать.) Предположим также, что вы рыцарь (о чем присяжным не известно), но не виновны в совершении преступления. Что бы вы заявили на суде?
102.
Эта задачка потруднее. Предположим, что преступник — не нормальный человек, то есть либо рыцарь, либо лжец. Вы не виновны. Какое высказывание, которое могло бы исходить и от рыцаря, и от лжеца, и от нормального человека, вы бы произнесли на суде, чтобы убедить присяжных в своей невиновности?
103.
А вот гораздо более простая задача. Известно, что преступник — не нормальный человек. Вы не преступник, но вполне нормальны. Какое высказывание, которое не могло бы исходить ни от виновного рыцаря, ни от лжеца, вы бы произнесли на суде, чтобы убедить присяжных в своей невиновности?
104.
Эта задача поинтереснее. Известно, что преступник — не нормальный человек. Предположим, что 1) вы не виновны и что 2) вы не лжец.
Можете ли вы одним-единственным высказыванием убедить присяжных в этих двух фактах?
105.
Эта задача в известном смысле «двойственна» предыдущей. Известно, что преступник — не нормальный человек, вы не виновны, но не рыцарь. Предположим, что по каким-то известным вам соображениям вы не прочь приобрести репутацию лжеца или нормального человека, но с презрением относитесь к рыцарям. Могли бы вы одним-единственным высказыванием убедить присяжных в том, что вы не виновны, но не рыцарь?
Г. Как жениться на дочери короля?
Наконец-то мы добрались до темы, которую вы все ожидали с нетерпением!
106.
Вы, житель острова рыцарей, лжецов и нормальных людей, влюблены в дочь короля Маргозиту и хотите жениться на ней. Король не желает, чтобы его дочь вышла замуж за нормального человека, и дает ей отеческие наставления: «Поверь мне, дорогая, тебе действительно не следует выходить замуж за нормального человека. Нормальные люди капризны, переменчивы, на них ни в чем нельзя положиться. С ними никогда не знаешь, где находишься. Один день он говорит тебе правду, на другой день лжет. Что в этом хорошего? Рыцарь же надежен, как скала. С ним всегда знаешь, на чем стоишь. С лжецом тоже чувствуешь себя вполне уверенно: что бы он ни сказал, стоит тебе лишь заменить его высказывание противоположным, и ты знаешь, как обстоит дело в действительности. Я считаю, что у человека должны быть какие-то принципы, которым он неукоснительно следует. Если человек видит высшее наслаждение в том, чтобы говорить правду, пусть говорит правду. Если считает, что ложь превыше всего, пусть лжет. А что представляют собой эти добропорядочные нормальные люди? Так себе: серединка на половинку, ни правды, ни лжи. Нет, они не для тебя!»
Предположим теперь, что вы не нормальный человек (и поэтому имеете шанс обрести в жены дочь короля). Чтобы получить согласие короля на ваш брак с его дочерью, вам необходимо убедить его в том, что вы не нормальный человек. Король дает вам аудиенцию, во время которой вы можете произнести сколько угодно высказываний. Задача подразделяется на две части.
а) Сколько истинных высказываний понадобится вам, чтобы убедить короля в том, что его будущий зять — не нормальный человек?
б) Сколько ложных высказываний понадобится вам, чтобы убедить короля в том, что его будущий зять — не нормальный человек?
(Подчеркнем, что и в том и в другом случае речь идет о минимальном числе высказываний.)
107.
На другом острове рыцарей, лжецов и нормальных людей король придерживался противоположных взглядов и дал дочери иные отеческие наставления: «Дорогая, я не хочу, чтобы ты вышла замуж за какого-нибудь рыцаря или лжеца. Мне хотелось бы, чтобы твой муж был солидным нормальным человеком с хорошей репутацией. Тебе не следует выходить замуж за рыцаря, потому что все рыцари — ханжи. Тебе не следует выходить замуж и за лжеца, потому что все лжецы вероломны. Нет, что ни говори, а добропорядочный нормальный человек был бы тебе как раз под пару!»
Предположим, что вы житель этого острова и нормальный человек. Ваша задача — убедить короля в том, что вы нормальный человек.
а) Сколько истинных высказываний понадобится вам для этого?
б) Сколько ложных высказываний понадобится вам для той же цели?
(И в том и в другом случае речь идет о минимальном числе высказываний.)
108.
Перед вами более сложный вариант предыдущей задачи. Ее решение представляет собой альтернативу (хотя и чрезмерно сложную) решению предыдущей задачи, но, чтобы решить ее, одного лишь решения предыдущей задачи недостаточно.
Предположим, что вы житель острова рыцарей, лжецов и нормальных людей и сами нормальный человек. Король хочет, чтобы его дочь вышла замуж только за нормального человека, но требует доказательства исключительного остроумия и сообразительности от своего будущего зятя. Чтобы получить руку королевской дочери, вы должны в присутствии его величества произнести одно-единственное высказывание, которое удовлетворяло бы двум следующим условиям:
1) Оно должно убедить короля в том, что вы нормальный человек.
2) Король не должен знать, истинно или ложно ваше высказывание.
Как это сделать?
Решения
88. C — либо рыцарь, либо лжец. Предположим, что C — рыцарь. Тогда по крайней мере двое из трех островитян — лжецы. Следовательно, ими должны быть A и B. Отсюда мы заключаем, что B — оборотень (так как, по его словам, он не оборотень, а по доказанному B — лжец). Итак, если C — рыцарь, то оборотень — лжец (так как им должен быть B). Предположим теперь, что C — лжец. Тогда неверно, что по крайней мере два из трех островитян — лжецы, поэтому среди них есть самое большее один лжец. Этим лжецом должен быть C. Следовательно, и A, и B — рыцари. Так как A — рыцарь и утверждает, что C — оборотень, то C действительно оборотень. Таким образом, и в этом случае оборотень — лжец (а именно C).
Следовательно, независимо от того, рыцарь ли C или лжец, оборотень — лжец (хотя в каждом случае речь идет о другом лице). Итак, ответ на первый вопрос гласит: оборотень — лжец. Кроме того, мы доказали, что оборотнем может быть либо B, либо C. Следовательно, если вы хотите выбрать себе попутчика, который заведомо не был бы оборотнем, то вам следует остановить свой выбор на A.
89. Докажем сначала, что C — рыцарь. Предположим, что C был бы лжецом. Тогда его первое высказывание было бы ложным, поэтому по крайней мере двое из трех островитян были бы рыцарями. Это означало бы, что A и B оба должны быть рыцарями (так как по предположению C — лжец). Следовательно, их высказывания были бы истинными, и они оба вопреки условиям задачи были бы оборотнями. Итак, C — рыцарь. Тогда ровно двое из трех лжецы. Ими должны быть A и B. А поскольку их высказывания ложны, то ни A, ни B не оборотни. Следовательно, оборотнем должен быть C. Таким образом, C — рыцарь и оборотень, A и B — лжецы, и ни один из них не оборотень.