KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Сэм Кин - Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде

Сэм Кин - Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Сэм Кин, "Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде" бесплатно, без регистрации.
Перейти на страницу:

Ранним утром 8 августа Ямагучи в обморочном состоянии приехал в Нагасаки и побрел домой. Его семья решила, что он погиб, и ему пришлось убеждать свою жену в том, что он не призрак, показав ей свои ступни (согласно японским верованиям у призраков нет ступней). Этот день он провел в покое, то приходя в сознание, то вновь теряя его. Но при этом он твердо решил на следующий день отправиться в штаб-квартиру фирмы «Мицубиси», которая находилась в Нагасаки.

Он прибыл туда незадолго до 11 часов утра. С перевязанными руками и лицом он изо всех сил старался рассказать своим коллегами о масштабе атомной войны. Однако его начальник не позволил запугать себя, скептически назвав весь рассказ враньем. «Ты ведь инженер, – рявкнул он. – Выполни расчеты. Как может одна бомба разрушить целый город?» Замечательные последние слова. Как только наш нострадамус умолк, комната стала наполняться белым светом. Жар стал терзать кожу Ямагучи, а сам он рухнул на пол офиса.

«Я подумал, – вспоминал он позже, – что это грибовидное облако пришло за мной из Хиросимы».

80 тысяч человек погибли в Хиросиме и еще 70 тысяч – в Нагасаки. Среди нескольких сотен тысяч уцелевших жертв всего лишь около 150 человек (что подтверждается свидетельствами) были в обоих городах в эти дни, а совсем небольшая их часть оказалась в пределах зоны взрыва – внутри круга диаметром около двух с половиной километров с мощным радиоактивным излучением. Некоторые хибакуся (nijyuu hibakusha), дважды облученные, но уцелевшие, могут поведать такое, от чего даже камни зарыдают. (Одному из таких уцелевших удалось пробраться внутрь своего разрушенного дома в Хиросиме, собрать обугленные кости своей жены и поместить их в умывальную раковину, чтобы затем доставить родителям жены, жившим в Нагасаки. Супруг с умывальной раковиной под мышкой с трудом добрался до улицы, на которой жили родители жены, как вдруг вновь утренний воздух притих, а небо растворилось в ослепительной белизне…) Однако среди всех двойных жертв японское правительство официально признает только одного хибакуся – Цутому Ямагучи.

Вскоре после взрыва в Нагасаки Ямагучи оставил своего обомлевшего начальника и коллег, а затем забрался на один из наблюдательных пунктов, расположенный на холме неподалеку. Под гнетущей завесой грязных облаков он увидел воронку на месте родного города и своего дома. Начался черный радиоактивный дождь, и Ямагучи изо всех сил поспешил спуститься с холма, опасаясь худшего. Но его жена Хисако и сын Кацутоси были в бомбоубежище и остались целы.

Когда радость от встречи с ними утихла, Ямагучи стал чувствовать себя еще хуже, чем раньше. Всю следующую неделю он фактически пролежал в убежище, страдая, как Иов. Его волосы выпали. Нарывы лопнули. Его постоянно тошнило. Лицо опухло, а одно ухо перестало слышать. Обожженная кожа спадала хлопьями, а под ней, подобно китовому мясу, алела плоть и причиняла боль. Как и Ямагучи, в эти месяцы страдали многие, и генетики стали опасаться этой затянувшейся агонии, поскольку постепенно стали проявляться признаки мутаций.

Ученые уже полвека знали о мутациях, но только исследования процесса «ДНК → РНК → белок», проводимые группой клуба галстуков РНК и другими, в точности установили, как устроены эти мутации. В большинстве мутаций встречаются «опечатки» – случайные замены оснований ДНК при ее репликации: например, триплет ЦАГ может превратиться в ЦЦГ. «Тихие» мутации не причиняют вреда, поскольку код ДНК является избыточным. Триплеты, следующие перед мутированным и после него, вызовут одну и ту же аминокислоту, и поэтому общий эффект можно сравнить с вариантами написания слова, вроде «карате» вместо «каратэ». Но если триплеты ЦАГ и ЦЦГ приведут к разным аминокислотам («бессмысленная» мутация), то такая ошибка может нарушить структуру белка и искалечить его.

Гораздо хуже «безумные» мутации. При создании белков клетки будут продолжать трансляцию РНК в аминокислоты до тех пор, пока не встретится один из трех «завершающих» триплетов (например, УГА), который останавливает процесс. «Безумная» мутация случайно превращает нормальный триплет в один из таких стоп-сигналов, который обрывает белок раньше времени и, как правило, выводит его из строя. Мутации могут также отменить стоп-сигнал, и тогда белок будет расти все дальше и дальше. Мутация, которая подобна черной мамбе, – мутация сдвига рамки считывания – не содержит «опечаток». Вместо этого исчезает какое-либо основание или происходит внедрение лишнего. А поскольку клетки считывают РНК последовательными группами по три основания, такая вставка или удаление искажают не только данный триплет, но и все последующие, вызывая многоступенчатую катастрофу.

Обычно клетки моментально исправляют простые «опечатки», но если что-либо пойдет не так (и ведь обязательно пойдет), дефект может навсегда зафиксироваться в ДНК. Каждый живущий ныне человек на деле родился с десятками мутаций, которых избежали его родители. Некоторые из этих мутаций могли бы привести к летальному исходу, если бы у каждого из нас не было двух копий каждого гена, по одному от каждого родителя. Если один из генов работает неправильно, его может подменить второй. Тем не менее все живые организмы с возрастом продолжают накапливать мутации. Небольшие существа, которые обладают высокой температурой тела, особо подвержены риску: на молекулярном уровне тепло является интенсивным движением, а чем сильнее это движение, тем более вероятна возможность ошибки в извивах ДНК при ее копировании. Млекопитающие являются достаточно крупными созданиями и, к счастью, поддерживают постоянную температуру тела, но и они становятся жертвами других мутаций. Когда в цепочке ДНК оказываются рядом два основания Т, ультрафиолетовое излучение может соединить их под неправильным углом, в результате чего образуется петля в ДНК. Такие дефекты могут полностью убить клетку или вывести ее из нормального режима. По сути, все животные (и растения) обладают специальными ферментами, которые расправляют петли T-оснований, но млекопитающие в процессе эволюции лишились таких веществ – именно поэтому млекопитающие подвержены солнечным ожогам.

Помимо самопроизвольных мутаций ДНК может быть повреждена также и внешними факторами, которые называются мутагенами. Некоторые мутагены причиняют больший урон, чем радиоактивность. Опять же, радиоактивные гамма-лучи приводят к образованию свободных радикалов, которые расщепляют фосфатно-сахарную основу ДНК. Теперь ученые знают, что если разорвется лишь одна из нитей двойной спирали, клетки способны с легкостью исправить повреждение, зачастую в течение часа. У клеток есть молекулярные «ножницы», с их помощью вырезается искалеченный участок ДНК, после чего в ход идут ферменты, которые прочесывает неповрежденную нить и добавляют в каждой точке комплементарные основания А, Ц, Г или Т. Процесс восстановления быстр, прост и точен.

Двойная спираль разрывается реже, но последствия этого более страшные. Двойные разрывы напоминают наспех ампутированные конечности: с обеих концов разорванной ДНК выступают остатки одиночной спирали. В клетках есть две практически одинаковые копии каждой хромосомы. Если в одной из них произойдет разрыв двойной спирали, клетки способны сравнить испорченные участки с другой хромосомой (будем надеяться, неповрежденной) и выполнить исправление. Но процесс этот трудоемкий, и если клетки обнаруживают, что вокруг есть повреждения, для которых необходимо быстрое восстановление, то зачастую происходит просто сцепление выступающих обрывков спирали по нескольким выровненным основаниям (даже если остальные не выровнены), а отсутствующие основания спешно заполняются. Неверно определенные основания могут вызвать ужасающую мутацию сдвига рамки считывания – и таких неверных «угадываний» предостаточно. Клетки, которые восстанавливают разрывы двойной спирали, совершают неверные действия приблизительно в 3000 раз чаще, чем при обычном копировании ДНК.

Хуже того, радиоактивность способна уничтожать фрагменты ДНК. Высокоорганизованным существам приходится сворачивать многочисленные витки ДНК, образуя маленькие ядра; человеческий рост (чуть менее двух метров) сжался бы до размеров меньше двух тысячных долей сантиметра. Такое интенсивное сдавливание часто приводит к тому, что ДНК становится похожей на запутанный телефонный шнур: спираль пересекает саму себя или многократно изгибается. Если гамма-лучи проникнут в ДНК и разорвут ее рядом с одним из таких пересечений, то появится множество свободных концов, расположенных близко друг к другу. Клетки «не знают», как были выстроены исходные спирали (у них нет памяти), и поэтому, стремясь спешно исправить повреждение, они иногда скрепляют то, что должно быть отдельными спиралями. Так вырезается и фактически уничтожается промежуточный участок ДНК.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*