KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Джордан Элленберг - Как не ошибаться. Сила математического мышления

Джордан Элленберг - Как не ошибаться. Сила математического мышления

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Джордан Элленберг, "Как не ошибаться. Сила математического мышления" бесплатно, без регистрации.
Перейти на страницу:

44

По правде сказать, речь идет о подростках из летнего математического лагеря.

45

Есть объект, 2-адические числа, для которых этот довод, на первый взгляд бредовый, абсолютно корректен.

Согласно теории Коши, сходимость ряда к пределу x означает, что когда вы суммируете все больше и больше членов этого ряда, итоговая сумма все больше приближается к значению x. Чтобы понять это, мы должны представлять, что значит «близость» двух чисел друг к другу. Оказывается, знакомое нам значение слова «близость» не единственное! В мире 2-адических чисел два числа считаются близкими друг к другу, если разность между ними представляет собой величину, кратную большой степени числа 2. Когда мы говорим, что ряд 1 + 2 + 4 + 8 + 16 + … сходится к значению −1, мы тем самым утверждаем, что частичные суммы 1, 3, 7, 15, 31… все больше приближаются к −1. В обычном понимании «близости» это не так, однако при использовании понятия 2-адической близости ситуация обстоит совсем иначе. Разность между числами 31 и −1 равна 32, что составляет достаточно малое 2-адическое число 25. Просуммируйте еще несколько членов этого ряда – и получите число 511, которое отличается от −1 на 512, еще меньшую величину (в 2-адическом смысле). Большая часть математики, которую вы знаете (анализ, логарифмы и экспоненциальные функции, геометрия), имеет аналог в мире 2-адических чисел (а также аналог в мире p-адических чисел для любого p). Взаимодействие между всеми этими концепциями близости являет собой отдельную историю – умопомрачительную и недосягаемо прекрасную.

46

Сюрреальные числа, которые описал Джон Конвей, – это особенно очаровательный и причудливый пример, о чем говорит само название. Этот класс чисел, глубинные аспекты которого еще не изучены, представляет собой удивительный гибрид чисел и стратегических игр. Полезную информацию об этих экзотических числах, а также многих математических методах ведения игр можно найти в труде Элвина Берлекэмпа, Джона Хортона Конвея и Ричарда Гая Winning Ways… («Выигрышные стратегии в математических играх»), см.: Elwyn R. Berlekamp, John H. Conway, Richard K. Guy. Winning Ways for Your Mathematical Plays. Natik MA: A K Peters/CRC Press. 2 ed. Vol. 1–4. 2001–2004.

47

Подобно всем математическим прорывам, теория пределов Коши имела предшественников; в частности, определение Коши было во многом созвучно с концепцией границ величины погрешности биномиального ряда Д’Аламбера. Однако нет никаких сомнений, что работа Коши представляла собой переломный момент: после него анализ стал таким, каким мы его знаем сейчас.

48

Г. Г. Харди. Расходящиеся ряды / Пер. с англ. Д. А. Райкова. М.: Изд-во иностранной литературы, 1951. С. 19. Прим. ред.

49

Есть какая-то ирония в том, что первоначально Гранди нашел своим расходящимся рядам теологическое применение!

50

Здесь уместно вспомнить известную фразу Кейди, героини Линдси Лохан: «Предела не существует!» [из фильма Mean Girls, 2004 («Дрянные девчонки»). Прим. М. Г.].

51

Если вы когда-либо изучали математический курс, в котором используются такие символы, как эпсилон и дельта, значит, вы знакомы с преемниками формальных определений Коши.

52

См. у Литтлвуда: «(А. С. Безикович) Репутация математика основывается на числе плохих доказательств, которые он придумал». И далее следует пояснение автора: «Работы первооткрывателей неуклюжи» (Дж. Литлвуд. Математическая смесь. М.: Наука, 1990. С. 42). Прим. М. Г.

53

Аркадные игры (arcade games) – компьютерные игры с нарочно примитивным игровым процессом. Прим. ред.

54

Более подробную информацию об этих исследованиях можно найти в статье, опубликованной в Journal of Stuff I Totally Made Up in Order to Illustrate My Point («Журнал, придуманный мною для освещения собственной точки зрения»).

55

В данном контексте «максимальная приближенность» определяется следующим образом. Если вы замените фактическую плату за обучение в каждом университете оценкой, которую подразумевает прямая, а затем вычислите разность между расчетной и фактической платой за обучение, после чего возведете каждое из этих чисел в квадрат и сложите все эти квадраты, то получите общий показатель того, насколько прямая не проходит по точкам. Надо выбрать прямую, у которой этот показатель минимален. Такое суммирование квадратов напоминает о Пифагоре; в действительности геометрия, лежащая в основе линейной регрессии, – не что иное, как теорема Пифагора, преобразованная и доработанная для решения задач с гораздо большей размерностью. Однако эта история требует больше алгебраических выкладок, чем я хотел бы здесь приводить. Более подробное описание соответствующих аспектов корреляции и тригонометрии можно найти в главе 15.

56

Марк Твен. Жизнь на Миссисипи / Пер. Р. Райт-Ковалевой // Марк Твен. Собрание сочинений в 12 томах. М.: Художественная литература, 1960. Т. 4. С. 351–352. Прим. ред.

57

Эти требования вызывают в памяти сюжет рассказа Орсона Скотта Карда Unaccompanied Sonata («Соната без сопровождения»). В нем идет речь о сверходаренном музыканте, которого держат в одиночестве, в строгой изоляции от всей существующей в мире музыки, с тем чтобы это не лишило оригинальности его собственную музыку. Но затем один человек пробирается к нему и дает запись с музыкой Баха. Разумеется, блюстители порядка узнают об этом и навсегда запрещают необыкновенному музыканту заниматься музыкой. Кажется, в дальнейшем ему отрежут пальцы, или лишат зрения, или сделают что-то еще, поскольку Орсон Скотт Кард имеет странную склонность к жестокому наказанию своих персонажей и расчленению их живой плоти. Как бы там ни было, смысл всей этой истории сводится к следующему: Бах слишком велик, чтобы пытаться удерживать молодых музыкантов от приобщения к его музыке. [См.: О. С. Кард. Соната без сопровождения / Пер. В. Постникова // О. С. Кард. Карты в зеркале. М.; СПб.: ЭКСМО; Домино, 2005. С. 417–439. Прим. ред.]

Комментарии

1

Биографические материалы об Абрахаме Вальде взяты из работы: Oscar Morgenstern. Abraham Wald, 1902–1950 // Econometrica, 1951, Oct., 19, no 4, p. 361–367.

2

Исторические данные о SRG взяты главным образом из следующего источника: W. Allen Wallis. The Statistical Research Group, 1942–1945 // Journal of the American Statistical Association, 1980, June, 75, no 370, p. 320–330.

3

W. Allen Wallis. The Statistical Research Group…, p. 322.

4

W. Allen Wallis. The Statistical Research Group…, p. 322.

5

W. Allen Wallis. The Statistical Research Group…, p. 329.

6

Я узнал о Вальде и проблеме крепкой авиационной брони из книги Говарда Вейнера: Howard Wainer. Uneducated Guesses: Using Evidence to Uncover Misguided Education Policies. NJ: Princeton University Press, 2011. Автор использует идеи Вальда для анализа таких же сложных и неполных статистических данных, полученных в ходе изучения сферы образования.

7

См.: Marc Mangel, Francisco J. Samaniego. Abraham Wald’s Work on Aircraft Survivability // Journal of the American Statistical Association, 1984, June, 79, no. 386, p. 259–267.

8

См.: Jacob Wolfowitz. Abraham Wald, 1902–1950 // Annals of Mathematical Statistics, 1952, Mar. 23, no. 1, p. 1–13.

9

Amy L. Barrett, Brent R. Brodeski. Survivor Bias and Improper Measurement: How the Mutual Fund Industry Inflates Actively Managed Fund Performance (http://www.etf.com/docs/sbiasstudy.pdf).

10

Martin Rohleder, Hendrik Scholz, Marco Wilkens. Survivorship Bias and Mutual Fund Performance: Relevance, Significance, and Methodical Differences // Review of Finance, 2011, vol. 15, no 2, p. 441–474 – см. таблицы. Мы перевели месячную избыточную доходность в годовую избыточную доходность, поэтому цифры в нашем тексте не совпадают с данными, приведенными в статье.

11

Abraham Wald. Method of Estimating Plane Vulnerability Based on Damage of Survivors. Alexandria, VA: Center for Naval Analyses, repr., 1980, July, CRC 432.

12

Что касается гипотезы Римана, мне больше всего нравятся книги: John Derbyshire. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Plume; Reprint edition, 2004 [Дж. Дербишир. Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. М.: Астрель; Corpus, 2010. – Прим. М. Г.]; Marcus du Sautoy. The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics. New York: Harper Perennial; Reprint edition, 2012. О теореме Гёделя см.: Douglas Hofstadter. Gödel, Escher, Bach: An Eternal Golden Braid. New York: Basic Books, 1999 [Д. Хофштадтер. Гёдель, Эшер, Бах. Эта бесконечная гирлянда. Самара: Бахрах-М, 2001. – Прим. М. Г.]. По правде сказать, теорема Гёделя упоминается в этой книге вскользь, как один из элементов размышлений о самоотносимости в искусстве, музыке и логике.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*