Ричард Фейнман - Характер физических законов
Многие явления природы задают нам интересные загадки в связи с энергией. Не так давно были открыты объекты, названные квазарами[13]. Они находятся на громадных расстояниях от нас и излучают в виде света и радиоволн так много энергии, что возникает вопрос, откуда она берется. Если энергия сохраняется, то состояние квазара после того, как он излучил такое чудовищное количество энергии, должно отличаться от первоначального. Вопрос в том, является ли источником энергии гравитация – не произошел ли гравитационный коллапс квазара, переход в иное гравитационное состояние? Или это мощное излучение вызвано ядерной энергией? Никто не знает. Вы скажете: «А может быть, закон сохранения энергии несправедлив?» Нет, когда явление исследовано так мало, как квазар (квазары настолько далеки, что астрономам нелегко их увидеть), и как будто бы противоречит основным законам, обычно оказывается, что не закон ошибочен, а просто мы недостаточно знаем явление.
Другой интересный пример использования закона сохранения энергии – реакция распада нейтрона на протон, электрон и антинейтрино. Сначала думали, что нейтрон превращается в протон и электрон. Но когда измерили энергию всех частиц, оказалось, что энергия протона и электрона меньше энергии нейтрона. Возможны были два объяснения. Во-первых, мог быть неправильным закон сохранения энергии. Бор[14] предположил, что закон сохранения выполняется только в среднем, статистически. Но теперь выяснилось, что правильно другое объяснение: энергии не совпадают потому, что при реакциях возникает еще какая-то частица – частица, которую мы называем теперь антинейтрино. Антинейтрино уносит с собой часть энергии. Вы скажете, что антинейтрино, мол, только для того и придумали, чтобы спасти закон сохранения энергии. Но оно спасает и многие другие законы, например закон сохранения количества движения, а совсем недавно мы получили прямые доказательства, что нейтрино действительно существует.
Этот пример очень показателен. Почему же мы можем распространять наши законы на области, подробно не изученные? Почему мы так уверены, что какое-то новое явление подчиняется закону сохранения энергии, если проверяли закон только на известных явлениях? Время от времени вы читаете в журналах, что физики убедились в ошибочности одного из своих любимых законов. Так, может быть, не нужно говорить, что закон выполняется в тех областях, куда мы еще не заглядывали? Но если вы никогда не скажете, что закон выполняется там, куда вы еще не заглядывали, вы ничего не узнаете. Если вы принимаете только те законы, которые относятся уже к проделанным опытам, вы не сможете сделать никаких предсказаний. А ведь единственная польза от науки в том, что она позволяет заглядывать вперед, строить догадки. Поэтому мы вечно ходим, вытянув шею. А что касается энергии, она, вероятнее всего, сохраняется и в других местах.
Вот почему наука недостоверна. Как только вы скажете что-нибудь об области опыта, с которой непосредственно не соприкасались, вы сразу же лишаетесь уверенности. Но мы обязательно должны говорить о тех областях, которых никогда не видели, иначе от науки не будет проку. Например, при движении тела его масса меняется из-за сохранения энергии. Из-за эквивалентности массы и энергии энергия, связанная с движением, проявляется как дополнительная масса. Двигаясь, тела становятся тяжелее. Ньютон был другого мнения. Он считал, что массы постоянны. Когда обнаружилось, что представления Ньютона неверны, все говорили: «Это ужасно! Физики нашли у себя ошибку! Почему же они думали, что они правы?» Эффект этот очень мал и проявляется только при скоростях, близких к скорости света. Если вы запустите волчок, то масса его останется такой же, как и в спокойном состоянии, с точностью до ничтожной дроби. Но тогда они должны были бы говорить так: «Если скорость не превышает такого-то значения, масса волчка не меняется». Все было бы ясно, не правда ли? Но нет. Ведь опыты проводились только с деревянными, медными и стальными волчками, и пришлось бы говорить: «Когда волчки, сделанные из меди, дерева и стали, крутятся не быстрее, чем с такой-то скоростью…» Как видите, мы не знаем всех условий, необходимых для опыта. Неизвестно, будет ли сохраняться масса радиоактивного волчка. Поэтому, если мы хотим, чтобы от науки была какая-то польза, мы должны строить догадки. Чтобы наука не превратилась в простые протоколы проделанных экспериментов, мы должны выдвигать законы, простирающиеся на еще не изведанные области. Ничего дурного тут нет, только наука оказывается из-за этого недостоверной. А если вы думали, что наука достоверна, вы ошибались.
Итак, возвращаясь к нашему списку законов сохранения (см. табл. 1), мы можем внести туда энергию. Насколько нам известно, она сохраняется в точности. Элементарной единицы энергии не существует. Далее, является ли она источником поля? Да. Эйнштейн считал, что гравитация порождается энергией. Энергия эквивалентна массе, и, следовательно, мысль Ньютона, что гравитация порождается массой, трансформировалась в утверждение, что гравитацию производит энергия.
Существуют другие сохраняющиеся величины, подобные энергии в том смысле, что они являются числами. Одна из них – количество движения. Если взять все массы системы, перемножить их на скорости и сложить, то сумма будет количеством движения системы; полное количество движения системы сохраняется. Согласно нынешним представлениям энергия и количество движения тесно связаны, поэтому я поместил их в одном столбце.
Рис. 20
Еще пример сохраняющейся величины – момент количества движения, о котором мы уже говорили. Например, если у нас есть движущееся тело и мы выберем произвольный центр, то скорость увеличения площади (рис. 20), описываемая отрезком, соединяющим тело с центром, умноженная на массу тела, называется моментом количества движения. Таким образом, момент количества движения численно равен площади, описываемой отрезком, соединяющим тело с центром, при движении тела за единицу времени. Сложив моменты всех тел, входящих в систему, мы получим момент количества движения системы. Эта величина не меняется. Итак, мы имеем сохранение момента количества движения. Кстати, многим часто кажется, будто момент количества движения не сохраняется. Подобно энергии, он проявляется в различных формах. Большинство людей думают, будто он связан только с движением, но я покажу вам, что он проявляется и в других формах. Если в проволочную катушку вдвигать магнит, то магнитное поле, магнитный поток внутри ее, увеличится и по проводу пойдет электрический ток. Вообразите, что вместо провода – диск, в котором имеются электрические заряды наподобие электронов в проволоке (рис. 21). Теперь я пододвигаю издалека магнит, вдвигаю очень быстро вдоль оси, точно в середину, и магнитный поток изменяется. Так же как и в проволоке, магнитные заряды начинают двигаться по кругу, и, если диск насажен на подшипник, он закрутится. Это не похоже на сохранение момента: когда магнит далеко от диска, диск не поворачивается, а когда близко – диск крутится. Мы получили вращение задаром, а это против правил. «Ах так, – скажете вы, – значит, должно существовать какое-то другое взаимодействие, заставляющее магнит крутиться в обратную сторону». Ничего похожего. На магнит не действует электрическая сила, которая стремилась бы повернуть его в обратную сторону. Все объясняется тем, что момент проявляется в двух формах. Одна из них – момент, связанный с движением, а другая – момент, связанный с электрическим и магнитным полями. Вокруг магнита существует поле со своим моментом, который не проявляется в движении, но по знаку противоположен вращению. Если мы проделаем опыт в обратном порядке (рис. 22), это станет еще яснее. Когда диск с заряженными частицами и магнит находятся рядом и оба неподвижны, я говорю, что поле обладает моментом, моментом в скрытой форме, не проявляющимся в механическом вращении. Когда же вы убираете магнит, поля разъединяются, и момент количества движения должен теперь проявиться – диск закрутится. Причина, заставляющая его крутиться, – это явление электромагнитной индукции.
Рис. 21
Рис. 22
Меняется ли момент количества движения порциями, я затрудняюсь сказать. На первый взгляд он никак не может изменяться порциями, ибо зависит от того, под каким углом вы строите проекцию системы. Вы смотрите на изменяющуюся площадь и, естественно, видите ее по-разному в зависимости от того, смотрите ли вы на нее прямо или под углом. Если момент изменяется порциями и, глядя на систему под одним углом, вы нашли, что он равен 8 единицам, а потом чуть-чуть изменили угол, то число единиц изменится незначительно, скажем, станет чуть-чуть меньше 8. Но 7 не чуть-чуть меньше 8; 7 меньше 8 на вполне определенную величину, так что момент вряд ли может изменяться порциями. Однако тонкости и странности квантовой механики позволяют обойти это доказательство: если мы измерим момент количества движения относительно любой оси, он, как ни странно, всегда будет выражаться целым числом единиц. Правда, в отличие от электрического заряда, это не те единицы, которые можно подсчитать. Момент изменяется порциями в математическом смысле таким образом, что при любом измерении величина его выражается целым числом. Но мы не можем толковать его так же, как целое число единичных электрических зарядов – воображаемых единиц, которые мы можем пересчитать: одна, другая, третья… В случае момента количества движения мы не можем представить их себе как отдельные единицы, и тем не менее число их – всегда целое… Что крайне странно.