KnigaRead.com/

Джеймс Глейк - Хаос. Создание новой науки

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Джеймс Глейк, "Хаос. Создание новой науки" бесплатно, без регистрации.
Перейти на страницу:

В архивах НАСА — а их существует около полудюжины в США — хранятся снимки, полученные с космических аппаратов. В начале 80-х годов неподалеку от городка Итака, где расположены Корнеллский университет и один из таких архивов, работал Филипп Маркус, молодой астроном, интересовавшийся также прикладной математикой. Получив данные наблюдений с космического корабля, он, среди немногих в США и Великобритании, занялся моделированием Пятна. Специалистам, не связанным гипотезой о чудовищном урагане, не пришлось долго искать аналогий. Взять, например, Гольфстрим, течение в западной части Атлантики. Оно также изгибается и разветвляется, в нем зарождаются небольшие волны, закручивающиеся в петли, а затем в кольца; поодаль от основного течения они образуют медленные продолжительные антициклонические водовороты. Напрашивалась и параллель с довольно специфическим явлением, известным в метеорологии как блокировка. Феномен блокировки имеет место, когда область высокого давления находится на значительном расстоянии от берега и медленно, неделями или месяцами, меняет направление, отклоняясь от оси восток — запад. Он искажает модели глобального прогнозирования погоды, но одновременно обнаруживает черты долговечной упорядоченности, подавая метеорологам слабую надежду.

Маркус часами изучал фотографии из архивов НАСА, великолепные изображения, полученные на аппаратуре шведской фирмы «Хассельблад», которая запечатлела и людей на Луне, и турбулентность на Юпитере. Универсальность законов Ньютона позволила Маркусу составить программу для решения задачи, которую он формулировал как поиск закономерностей поведения массы плотного водорода и гелия, напоминающей незажженную звезду. Юпитер вращается быстро, период его вращения составляет приблизительно десять земных часов. Это вращение порождает направленную в сторону мощную силу Кориолиса, которая толкает назад человека, идущего сквозь вихрь. Именно такая сила и подпитывает Пятно.

В отличие от Лоренца, который использовал маломощный компьютер для составления приблизительных графиков погоды, Маркус располагал гораздо более широкими возможностями, чтобы создавать потрясающе красочные картины. Сначала он сделал лишь эскизы, поскольку происходящее вырисовывалось весьма смутно. Затем ученый изготовил слайды и собрал все компьютерные изображения в некое подобие анимационного фильма. Увиденное обернулось открытием: модель кружащихся вихрей в ярких синих, красных и желтых цветах срасталась в овал, как две капли воды похожий на Большое Красное Пятно, чей образ был запечатлен космическим аппаратом и хранился теперь в НАСА. «Вы видите эту огромную отметину, купающуюся, словно моллюск, в мелких хаотичных течениях, которые, в свою очередь, вбирают в себя энергию, подобно губке! — восклицал ученый. — Вы видите эти крошечные волокнистые структуры в море хаоса на заднем плане!»

Пятно представляло собой самоорганизующуюся систему, порожденную и регулируемую теми же нелинейными эффектами вращений, которые создают непредсказуемый беспорядок вокруг него. Это был образчик стабильного хаоса.

Еще старшекурсником Маркус изучал традиционную физику, осваивал теорию линейных уравнений и ставил эксперименты, пытаясь с их помощью решить сложные проблемы, которые приводили к уравнениям нелинейным. Свой подкоп под крепостные стены научной традиции он вел втайне, поскольку не полагалось выпускнику тратить драгоценное время на возню с нелинейными уравнениями, которые все равно не имеют решения. Помня об этом, Маркус относился к своим исследованиям как к хобби и не вдруг узрел в них нечто такое, что можно было рассматривать как знамение хаоса. Когда же это случилось, он замер на миг в восхищении и воскликнул: «Вот здорово! Как вам понравится такой маленький беспорядок?» Этот вопрос был адресован реальному миру, сиречь коллегам и учителям, а мир ответил: «Да не волнуйся ты так! Это всего лишь погрешность эксперимента».

Но в отличие от большинства физиков Маркус отлично усвоил уроки Лоренца, состоявшие в том, что детерминистская система может демонстрировать не одно только периодическое поведение. Он понимал, что необходимо искать неупорядоченность, заключающую в себе структурированные фрагменты. Маркус рассматривал загадку Большого Красного Пятна, сознавая, что сложная система может породить турбулентность и организованность одновременно. Он чувствовал в себе силы для созидания в новой области науки, которая нашла особое применение компьютерам, и был готов причислить себя к новому типу ученых. Они, эти ученые, были не столько астрономами, не столько физиками или прикладными математиками, сколько специалистами по хаосу.

Глава 3

Взлеты и падения жизни

При использовании математики в биологии следует всегда проверять результат интуицией, сопоставляя его с разумным биологическим поведением рассматриваемых объектов. Когда такая проверка выявит расхождение, нужно учесть вероятность того, что: а) была допущена математическая ошибка; б) исходные предположения неверны и/или являются слишком грубой моделью реальной ситуации; в) интуиция исследователя недостаточно развита; г) открыт новый основополагающий принцип.

Харви Дж. Голд. Математическое моделирование биологических систем

Стаи рыб жадно пожирают планктон. Влажные тропические леса кишат неизвестными рептилиями, птицами, скользящими под навесом густой листвы, гудящими, словно частицы в ускорителе, насекомыми. Там, где царит вечная мерзлота, идет трудная борьба за выживание: регулярно, раз в четыре года, стремительно возрастают, а затем убывают популяции мышей-полевок и леммингов. Наш мир — огромная лаборатория природы, создавшей около пяти миллионов взаимодействующих друг с другом биологических видов. Или пятьдесят миллионов? Специалистам точно не известно.

Биологи XX века, обратившись к математике, создали новую дисциплину — экологию, которая, абстрагируясь от реальной жизни сообществ животных и растений, стала рассматривать их как динамические системы. Экологи включили в свой арсенал элементарные инструменты математической физики для описания колебаний численности биологических объектов. Отдельные виды активно размножаются там, где ограничены пищевые запасы, другие находятся в стадии естественного отбора, третьи косит эпидемия. И все это может быть разделено, изолировано друг от друга и препарировано как на практике, так и в умах теоретиков от биологии.

Когда в 70-е годы хаос превратился в обособленную отрасль знания, экологам в ней была отведена специальная ниша. Ведь они тоже прибегали к математическому моделированию, сознавая, впрочем, что их модели лишь слабое приближение к реальному миру, в котором кипит жизнь. Зато осознание этого факта позволяло проникаться важностью идей, которые математики считали не более чем странными. Появление в стабильных системах неупорядоченного поведения означало для эколога отличный результат. Уравнения, применявшиеся в биологии популяций, являлись копиями физических моделей определенных фрагментов Вселенной. Тем не менее предмет исследования биологических наук превосходил сложностью любую физическую задачу. Математические модели биологов, как и те, что создавались экономистами, демографами, психологами, градостроителями, привносили в эти далекие от точности дисциплины элементы строгости и жесткости, однако напоминали карикатуры на реальный мир. Разумеется, стандарты, принятые в разных областях знания, различались: физику система уравнений Лоренца казалась простой, если не сказать примитивной, а для биолога она представляла непреодолимую трудность.

Биологи вынуждены были создать новые методы исследований, несколько по-иному подгоняя математические абстракции под реальные феномены. Физик, анализируя определенную систему (допустим, два маятника, соединенные стержнем), начинает с подбора уравнений: сначала лезет в справочник, а если там не найдется ничего подходящего, строит нужные уравнения исходя из основополагающих теоретических принципов. Зная механизм функционирования обычного маятника и учитывая жесткую связь (стержень), физик попытается решить уравнения, если такое возможно. Биологу же, напротив, никогда не придет мысль теоретически вывести необходимые уравнения, основываясь лишь на знаниях об отдельной популяции животных. Ему необходимо собрать исчерпывающие данные, а затем уж найти уравнения, которые дали бы схожий с реальностью результат. Что получится, если поместить тысячу рыб в пруд с ограниченными пищевыми ресурсами? Что изменится, если выпустить туда еще пятьдесят акул, поедающих по две рыбы в день? Какая судьба постигнет вирус, вызывающий гибель определенного количества животных и распространяющийся с известной скоростью, которая зависит от плотности популяции? Экологи идеализировали подобные задачи, стараясь решить их с помощью уже известных формул.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*