KnigaRead.com/

Всеволод Арабаджи - Загадки простой воды

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Всеволод Арабаджи, "Загадки простой воды" бесплатно, без регистрации.
Перейти на страницу:

При сильном выхолажнвании приземного воздуха в атмосфере могут возникать мощные, температурные инверсии со скачком температуры 20°C и более. Центральные районы Якутии занимают первое место в мире по количеству таких инверсий. Проходящие через атмосферу под большим наклоном звуковые лучи в слоях инверсии испытывают сильное преломление и возвращаются к земле, за счет фокусировки звуковых лучей температурной инверсией резко возрастает дальность слышимости звуковых сигналов. Р. Скотт в Антарктиде при штиле и температуре около – 60°C слышал скрип снега под лыжами и удары ломов о лед с расстояния порядка 4...5 км. В Оймяконе лай собак, работа электропилы и широковещательные радиопередачи средней громкости на открытом воздухе в середине зимы хорошо слышны из ближайшего совхоза, находящегося в 2,5 км от места наблюдения (слова в радиопередачах при этом разобрать нельзя).


В Канаде при самых низких температурах от движения человека в воздухе образуется и сохраняется в течение 3...4 минут кристаллический след протяженностью от 100 до 400 м. (Подобное явление, но с большей протяженностью и длительностью существования кристаллического следа, можно наблюдать в любой местности при полетах самолетов на больших высотах. Летчики такой след называют инверсионным). В течение нескольких дней в Канаде при наиболее холодной погоде на уровне верхушек деревьев в воздухе могут сохраняться следы тумана над местами стоянок собачьих упряжек. Испарение снега в этих условиях происходит со скоростью около 12...14 мм в день.


При температурах ниже – 60°C оседающие на антеннах заряженные кристаллы льда создают интенсивные (статические) помехи для радиосвязи, подобные атмосферным при грозах.


Интересно, что за весь период наблюдений на полюсах холода отмечается медленное, но устойчивое повышение абсолютных минимумов температуры. По-видимому, это отражает господствующую в наше время тенденцию в изменении климата планеты.


Акустика снега и льда


В утренние часы в горах происходит подтаивание находящегося между камнями льда. Это приводит к уменьшению сцепления камней друг с другом, к возникновению шумных камнепадов, лавин и осыпей. В вечерние часы камнепады происходят из-за перемещений камней при замерзании воды. Так как камнепады приносят людям немало вреда, разработаны приборы, предупреждающие о возможном обрушении пород – они фиксируют звуки, возникающие в горной породе при растрескивании, предшествующем камнепаду.


Растрескивание ледяного покрова на крупных внутри-материковых водоемах и в северных морях сопровождается звуками, напоминающими сухие ружейные выстрелы. Чем толще лед, тем шире и глубже трещины и сильнее звуки растрескивания. В полярных странах они настолько часты, что привыкшие к ним животные не боятся и настоящих выстрелов. Интенсивность растрескивания льда зависит от глубины и скорости выхолаживания, от степени неоднородности структуры льда и покрывающего его снежного покрова. Особенно благоприятно для образования трещин отсутствие снежного покрова на льду. Чаще всего растрескивание наблюдается при первых больших морозах в начале зимы и при резких потеплениях в ее середине. Вот как описывает звуковые эффекты при растрескивании льда на Телецком озере на Алтае О.И. Алекин: «В морозную ночь все озеро наполнено непрерывным треском, напоминающим отдаленную ружейную стрельбу, временами в эти звуки врываются более сильные удары, напоминающие удары колокола – это образуются более крупные трещины. Подхватываемые эхом соседних гор, звуки приобретают характер подземного гула...»


Разломы льда в океане под влиянием сил сжатия (ветер, течения) или сейсмических возмущений сопровождаются глухим гулом, похожим на отдаленные подводные взрывы.


В зоне вечной мерзлоты при замерзании подпочвенных вод происходит вспучивание почвы, образуются бугры. Возникновение значительных масс подпочвенного льда сопровождается резкими звуками, напоминающими артиллерийский обстрел. Деревья могут при этом склоняться до земли, в воздух поднимаются столбы снежной пыли и ледяных осколков.


Верхоянская впадина в Сибири во время зимних ночей сильно выхолаживается, В сухом приземном слое воздуха при температуре – 65° покрывающий почву неглубокий снежный покров наполовину испаряется. Все это создает благоприятные условия для охлаждения почвы. С сильным треском она при этом разрывается на небольшие участки (полигоны).


В полярных странах нередко наблюдается явление, получившее название «толчки фирна». Оно состоит в том, что при резком оседании верхних разрыхленных слоев снега возникают сопровождаемые сильным гулом и треском мощные колебания снежного покрова, простирающиеся на 3...4 м в глубину и охватывающие площадь в несколько десятков километров. «Толчки фирна» могут быть вызваны движением по поверхности снега машин, человека или животного, а иногда и просто давлением ветра. Впервые это явление было отмечено немецким метеорологом А. Вегенером в Гренландии во время экспедиции в 1930 году.


Внимательные наблюдатели природы давно уже обратили внимание на изменение с понижением температуры воздуха скрипа снега при ходьбе: при низких температурах скрип всегда более звонок. Некоторые метеорологи первой четверти нашего века предлагали даже оценивать температуру по воспринимаемым на слух изменениям в характере скрипа снега.


Акустические измерения показали, что в спектре скрипа снега имеются два пологих и не резко выраженных максимума – в диапазоне 250...400 Гц и 1...1,6 кГц. В большинстве случаев низкочастотный максимум на несколько децибел превышает высокочастотный. При температуре воздуха выше – 6° высокочастотный максимум сглаживается и нередко полностью ликвидируется. С понижением температуры от – 8° до – 20° сила звука скрипа снега увеличивается на 1 дБ.


При ломке ледяных сосулек диаметром 1,5...4 см были отмечены два максимума акустической энергии – в диапазоне 125...200 Гц и 1,25...2 кГц. Максимумы эти достаточно резко выражены и четко отделены друг от друга. Такая же картина распределения акустической энергии по спектру наблюдается и при взламывании речного льда толщиной 0,5 м с помощью ледокола. Таким образом высокочастотные максимумы акустической энергии для скрипа снега, ломки сосулек и речного льда приходятся на один и тот же диапазон частот, низкочастотные же смещены по спектру. Это указывает на различие в жесткости структуры снега и льда.


Известно, что мягкие материалы при ударе или изломе дают глухой звук, в котором высокие частоты ослаблены или совсем не представлены. Понижение температуры окружающей среды ведет к увеличению твердости материалов, к усилению взаимодействия между частицами вещества. Поэтому при ударе или изломе тел, находящихся в условиях пониженной температуры, спектр возникающих акустических колебаний распространяется в область высоких частот.


Благодаря наличию множества воздушных промежутков между кристаллами льда, снежный покров имеет невысокую плотность, и его с полным основанием можно отнести к категории мягких материалов. При понижении температуры кристаллы становятся более упругими, а снежный покров в целом – более хрупким. Это и обеспечивает расширение акустического спектра скрипа снега в область высоких частот. Поскольку скрип снега является результатом массового слома кристаллов льда, можно полагать, что перераспределение энергии скрипа с температурой указывает на изменения в характере взаимодействия элементов структуры снежного покрова.


. В тихую морозную погоду при температуре воздуха ниже – 49° в холодных странах (особенно в Якутии) наблюдатели нередко отмечают шуршащий звук, напоминающий звук пересыпаемого зерна. На первых порах этот звук приписывали полярному сиянию, которое часто наблюдалось при этом явлении. Однако впоследствии было установлено, что причина явления – в столкновении кристаллов льда, которые образуются в большом количестве при дыхании человека в морозном воздухе. У якутов это явление известно под именем «шёпота звезд». Яркое описание его. дано Н.С. Лесковым в рассказе «На краю света».


Акустические волноводы


Скорость звуковых лучей, проходящих через слои воздуха, зависит от его температуры, влажности, силы и направления ветра. В этих слоях звуковые лучи испытывают преломление. Если скорость звука с высотой возрастает, то траектория идущего под углом к горизонту звукового луча будет обращена выпуклостью к высоким слоям атмосферы, в противоположном случае она обращена выпуклостью к земле. Наибольшее искривление траектории звукового луча происходит за счет того, что скорость ветра с высотой изменяется. Менее сильное влияние на искривление траектории звукового луча оказывают изменения температуры.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*