KnigaRead.com/

Евгений Попов - Спускаемые аппараты

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн "Евгений Попов - Спускаемые аппараты". Жанр: Прочая научная литература издательство -, год -.
Перейти на страницу:

По достижении заданных значений высоты над лунной поверхностью и вертикальных составляющих скорости двигатель выключился и повторно включился, а на высоте 20 м вместо него начинали работать двигатели малой тяги. Перед включением двигателя для осуществления торможения два отсека с опорожненными топливными баками (топливо использовалось при проведении коррекции и торможении у Луны для создания орбиты искусственного спутника Луны), а также с аппаратурой астронавигации и другими приборами, не задействованными для проведения посадки, сбрасывались, и на Луну опускалась облегченная посадочная ступень с полезным грузом (рис. 7). В качестве последнего использовалась у «Луны-16», «Луны-20» и «Луны-24» возвратная ракета Луна — Земля, а для «Луны-17» и «Луны-21» — самоходный аппарат «Луноход».


Рис. 7. Спускаемый аппарат станции «Луна-16»: 1 — антенна; 2 — грунтозаборное устройство; 3 — отсек системы управления; 4 — топливный бок; 5 — опора; 6 — двигатель

  

Посадочная ступень после выключения двигательной установки опускалась на поверхность. Удар о грунт смягчали четыре опоры с амортизаторами. Причем энергия удара расходовалась на растяжение металлических стержней, расположенных в стойках опор, и на смятие тарельчатых опор, изготовленных с сотовым заполнением.

СПУСКАЕМЫЙ АППАРАТ СТАНЦИИ «СЕРВЕЙЕР»

Программа «Сервейер» предназначалась для изучения характеристик лунного грунта и условий на лунной поверхности, чтобы обеспечить успешное выполнение программы «Аполлон». Конструктивно аппарат «Сервейер» состоит из каркаса, изготовленного из алюминисвых труб, к которому крепились три опоры посадочного устройства и мачта для установки батарей солнечных элементов и остронаправленной антенны. На каркасе располагались два герметичных контейнера с электронной. аппаратурой, двигательная установка, телевизионная камера, навигационное и научное оборудование.

При стартовой массе «Сервейера» порядка 1 т на Луну опускался спускаемый аппарат массой около 280 кг после израсходования топлива и сброса части оборудования, не нужного при посадке.

Основной тормозной двигатель шаровой формы работал на твердом топливе. Двигатели малой тяги, установленные на аппарате, были жидкостными. В составе аппарата находились солнечный датчик и датчик опорной звезды Капопус, а также несколько радиолокаторов, служащих для определения скорости спуска и расстояния до лунной поверхности. Радиовысотомер давал сигнал на выключение тормозного двигателя. Другой высотомер с помощью бортовой вычислительной машины управлял двигателями малой тяги.

Посадочное устройство аппарата при старте находилось в сложенном состоянии и развертывалось только лишь после того, как аппарат выводился на траекторию полета к Луне. Опоры имели стойки с амортизаторами самолетного типа. К нижней части опор были шарнирно подвешены тарельчатые амортизаторы из алюминиевых сот. К нижней части каркаса аппарата были прикреплены амортизационные блоки из алюминиевых сот, предназначенные для смягчения удара каркаса о грунт в момент прогиба основных опор.

СПУСКАЕМЫЙ АППАРАТ КОРАБЛЯ «АПОЛЛОН»

Спускаемый аппарат этого корабля был назван американскими специалистами лунной кабиной. Она предназначалась для доставки двух космонавтов с селеноцентрической орбиты на поверхность Луны, для обеспечения их пребывания на поверхности и доставки с поверхности Луны на селеноцентрическую орбиту. Лунная кабина состояла из посадочной и взлетной ступеней. При старте с Луны посадочная ступень оставалась на Луне. Лунная кабина представляла собой сложное инженерное сооружение, в котором размещались система жизнеобеспечения, система наведения и навигации, энергетическая установка, связное оборудование, бортовые двигатели и научное оборудование.

После отделения лунной кабины от корабля «Аполлон» и достижения расстояния между ними 18 м, лунная кабина разворачивалась для ее осмотра в целях поиска возможных повреждений. Затем на 32 с включался основной двигатель посадочной кабины, который переводил спускаемый аппарат на эллиптическую орбиту с высотой перицентра 15 км над лунной поверхностью. Спуск лунной кабины на поверхность Луны происходил в три этапа: торможение, выведение в район посадки и посадка.

По достижении перицентра включался двигатель посадочной ступени лунной кабины, который при работе на полной тяге создавал торможение продолжительностью 8 мин. За это время кабина проходила около 400 км и снижалась до высоты 2,6 км. До района посадки еще оставалось около 15 км. Здесь начинался этап выведения в район посадки, для этого лунная кабина разворачивалась с таким расчетом, чтобы космонавты могли видеть выбранный район. На этом этапе двигатель посадочной ступени работал на 60 % от полной тяги и менее чем за 1,5 мин уменьшил скорость полета кабины со 137 до 15 м/с.

В конце этого этапа высота над поверхностью равнялась 150 м, а расстояние от места посадки составляло примерно 360 м. На заключительном этапе посадки управление полетом полностью осуществляли космонавты. Обеспечивалась ориентация лунной кабины, постепенное уменьшение тяги двигателя и вертикальный спуск с высоты 30 м. Минимальная длительность посадки равнялась 75 с, однако на практике она длилась дольше, так как требовалось время для осмотра района посадки и выбора более подходящего участка прилунения.

Для обеспечения мягкой посадки посадочная ступень снабжалась специальным шасси. При старте шасси находилось в сложенном виде, телескопические стойки были прижаты к корпусу посадочной ступени. Шасси разворачивалось только после перехода космонавтов в лунную кабину. К стойкам шасси на шарнире крепились тарельчатые опоры, изготовленные из алюминиевых сот. Для амортизации ударных нагрузок использовался сминаемый сотовый заполнитель из алюминиевого сплава, имевшийся в телескопических стойках посадочного шасси. Стойка способна была укорачиваться на 0,8 м.

Предусматривалось, что на высоте около 1 м космонавты выключат двигатель посадочной ступени, чтобы предотвратить перегрев днища спускаемого аппарата от истекающей струи, отраженной от грунта. Опасались также взрыва двигателя, если бы он в работающем состоянии коснулся грунта. Но на практике уже при первой посадке космонавт Н. Армстронг забыл выключить двигатель, но лунная кабина в момент касания с грунтом имела практически нулевую скорость. Двигатель был выключен от щупа, расположенного на стойке шасси.

Возвращение космонавтов с Луны осуществлялось с помощью взлетной ступени. Старт производился аналогично старту ракеты на Земле, только вместо стартового устройства здесь использовалась посадочная ступень. Взлетная ступень выходила на орбиту искусственного спутника Луны, а затем состыковалась с основным блоком корабля «Аполлон». После перехода из нее космонавтов и переноса оттуда необходимого оборудования и материалов она отстыковаласъ от основного блока. В дальнейшем взлетная ступень либо оставалась на селеноцентрической орбите, либо ее направляли на поверхность Луны.

СПУСК В РАЗРЕЖЕННОЙ АТМОСФЕРЕ

В практике космических полетов такие спускаемые аппараты применялись только для полета на планету Марс. Атмосфера этой планеты сильно разреженна. Атмосферное давление на поверхности здесь составляет от 1/160 до 1/100 от нормального атмосферного давления на Земле. Но, несмотря на такую разреженность, вход в атмосферу с космическими скоростями сопровождается явлениями, аналогичными для земной атмосферы. Для торможения и снижения скорости от космической в несколько километров в секунду до порядка 200–300 м/с и в марсианской атмосфере возникает достаточная для этого аэродинамическая сила.

Вся сложность спуска в атмосфере Марса заключается в том, что достижение скорости 200–250 м/с может произойти либо вблизи поверхности, либо перед самым ударом в нее. Времени на введение парашютной системы практически не остается, и спускаемый аппарат может разрушиться при ударе о поверхность раньше, чем произойдет эффективное торможение с помощью парашюта. Поэтому вводить парашют необходимо не при скоростях полета 200–250 м/с, а значительно раньше — еще при гиперзвуковых скоростях порядка 2М (порядка 650 м/с).

При этом возникает проблема введения парашютов в гиперзвуковой поток. Для изготовления парашютов необходимо применять особопрочньгй материал, который способен выдерживать большие нагрузки, развивающиеся при открытии парашюта. Чтобы уменьшить нагрузки на парашют, необходимо вводить несколько каскадов парашютов один за другим с увеличивающимися площадями куполов, В этом случае нагрузки возрастают медленно. Другой путь уменьшения перегрузок — ввод зарифленной парашютной системы с постепенным раскрытием в несколько этапов основного парашюта.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*