Ф Биро - Досье внеземных цивилизаций
Выяснили также, что разные части Юпитера вращаются с неодинаковой скоростью: экваториальная зона быстрее, полярная - медленней. Наконец, на нем открыли одиннадцать крупных те-. чений. Так пришли к выводу, подтвержденному всеми последующими наблюдениями и анализами, что у этой планеты очень густая атмосфера. Предполагают, что строение остальных гигантских планет такое же, но пока они недостаточно изучены. Долгое время считалось, что у них есть небольшое твердое ядро, состоящее из железа и горных пород, приблизительно похожих на земные, покрытое толстой ледяной мантией, а затем жидкой и в верхних слоях газообразной атмосферой, очень густой и плотной, причем доступны для наблюдений лишь самые верхние слои этой атмосферы. Но в 1954 году были открыты исходящие от Юпитера сильные и краткие радиоэлектрические сигналы, подобные радиопомехам в грозу. Это сильно поколебало прежние представления и дало почву для новых дискуссий.
Атмосферы этих планет столь густы потому, что, в отличие от небольших планет вроде Земли, масса планет-гигантов достаточно велика,
чтобы сохранить их*. Но сам термин "атмосфера", обозначающий возможность жизни на планете, в данном случае ведет к недоразумениям. Ведь эта атмосфера так плотна, что давление на уровне моря сжижает любые газы, вплоть до водорода и гелия.
Яркую и заманчивую картину этих зловещих далеких миров дополняют крайне низкие температуры (от -140 до -200°). Можно ли надеяться найти следы жизни в вечных льдах, сдавленных атмосферой без кислорода и водных паров, но состоящей из сильно ядовитых газов? При нынешнем состоянии наших знаний следует думать, что шансы на это весьма и весьма малы.
МЕРКУРИЙ: УСЛОВИЯ НЕБЛАГОПРИЯТНЫ. ЗАГАДКИ ВЕНЕРЫ
Методически рассматривая планеты Солнечной системы, мы убедились, что наличие атмосферы у планет играет очень важную роль. Теперь настало время объяснить, почему одни планеты окружены плотной атмосферой, другие - незначительной, третьи практически лишены ее.
Поскольку газы вообще характеризуются способностью бесконечно расширяться, встает вопрос, почему они не рассеиваются в космическом вакууме, а сосредоточиваются около планет. Дело в том, что молекулы газа сами по себе подобны
* Следует напомнить, что масса есть мера количества материи и измеряется в килограммах. Вес же тела есть сила, с которой на тело действует планета, на которой оно находится. К сожалению, вес также нередко выражают в килограммах (Сейчас официально принята другая единица - ньютон. - Прим. пер.), что приводит к путанице. Но смешивать массу и вес нельзя. Скафандры астронавтов "Аполлона-II" имели массу 90 кг. На Земле их вес равнялся 90 кг (килограмм-сил), а на Луне - всего 15 кг.
небесным телам и их поведение управляется теми же законами. Каждая молекула - это своего рода миниатюрный снаряд, запущенный в бесконечность, но удерживаемый планетным притяжением. "Скорость освобождения", которой нужно достичь любой частице (или любому космическому снаряду), чтобы преодолеть планетное притяжение, зависит от массы планеты. Более тяжелые планеты энергичней удерживают молекулы своей атмосферы.
В то же время скорость движения молекул увеличивается с ростом температуры. Итак, понятно, что массивные холодные планеты - от Юпитера до Нептуна - крепко удерживали газы своей первоначальной атмосферы и теперь ок-1 ружены густой газообразной оболочкой. Теллу-j рические же планеты, значительно более лег-1 кие и теплые, за время, протекшее с их воз-ч никновения, почти всю свою первоначальную атмосферу уже растеряли. Вокруг них возникла новая атмосфера, совсем другой природы, преимущественно за счет испарений их коры. Так объясняется огромное различие между густыми, хотя и состоящими из легких газов, атмосферами планет-гигантов и "вторичными" атмосферами теллурических планет.
Теперь нетрудно понять, почему планетные атмосферы нестабильны, почему, например, атмосфера Меркурия, рассеялась в космосе. Ведь из наблюдений за самой маленькой планетой (они подтверждены расчетами) мы знаем, что там нет заметных следов атмосферы.
Если к этому крайне неблагоприятному фактору добавить, что близость к Солнцу обрекает Меркурий на чрезвычайно высокие температуры порядка 400°, станет ясно, что практически нет шансов обнаружить там жизнь в представимой для нас форме.
Настала очередь Венеры - самой яркой звезды небосвода, которая блещет на востоке, предваряя солнечный восход, или первой появляется в лучах заката на западе. Странная вещь! Венера - близнец Земли по размерам, массе и плотности, ее орбита пролегает ближе всего к нашей, но она остается для людей самой загадочной из планет. "Утренняя звезда" словно боится потерять свой романтический облик, когда с нее будут сорваны густые покровы...
Между астрономами нет согласия даже, когда речь идет о таких основополагающих вопросах, как период вращения Венеры. Это не какая-то малозначительная деталь, а самая основная характеристика! Но вот в 1967 году астроном П.Герен так подвел итог своего исследования этой проблемы: "...Примем, пока не доказано противное, что Венера вместе с атмосферой вращается вокруг своей оси в обратном направлении с периодом 4, а не 240 суток". И в то же время в "Планетном атласе" 1968 года читаем: "В настоящее время принято считать, что Венера вращается вокруг своей оси в обратном направлении с периодом 245+(-)2 суток ..."
Повторяем: речь идет не о нюансах! Эти расхождения объясняются огромными трудностями наблюдения за Венерой, которая окружена чрезвычайно густой атмосферой. Можно почти не сомневаться, что прямое наблюдение не позволяет видеть ее поверхности, и нельзя быть уверенным, что волны, испускаемые радаром, полностью доходят до поверхности и нормально отражаются от нее. Впрочем, последние измерения подтверждают версию о периоде обращения, равном 245 земным суткам*.
Между тем вопрос о периоде обращения крайне важен для решения проблемы о возможности жизни на планете. Если оно синхронно (период суточного обращения совпадает с периодом
Более точное значение равно 243 суткам. - Прим. пер.
ния вокруг Солнца), значит, Венера всегда обращена к Солнцу одной стороной. В таком случае у нее одна сторона очень жаркая, другая очень холодная, а между ними есть узкая полоса умеренной температуры, где бушуют свирепые бури.
Сведения о температуре Венеры тоже весьма разноречивы. Видимо, лучший способ изучения ее - космические зонды. 14 декабря 1962 года американский зонд "Маринер-З", снабженный болометром** и радиопередатчиком сантиметрового диапазона, прошел на расстоянии 41 000 км от Венеры. Он измерил температуру планеты как в верхних слоях атмосферы, так и на поверхности. Первая колебалась от -33 до -53°, вторая достигала +300°. Такой перепад объясняется так называемым "парниковым эффектом". Солнечный свет проходит сквозь атмосферу и достигает поверхности. Поверхность, нагреваясь, испускает инфракрасные лучи, которые не пропускает через себя углекислый газ. Таким образом, инфракрасные лучи попадают в "ловушку" подобно тому, как это происходит в парнике или в оранжерее.
Таким образом, хотя Земля и Венера получают почти одинаковое количество солнечной энергии, температура на Венере намного выше.
О рельефе этой планеты, которая так сопротивляется изучению, известно мало. Полагают, что ее поверхность твердая - песчаная или скальная, и гораздо менее повреждена ударами метеоритов, чем лунная. Атмосфера же состоит главным образом из двуокиси углерода (СО. ), содержит также следы водяных паров и, возможно, немного озона. Но прежде всего она характеризуется очень высокой плотностью, создающей на поверхности давление не менее 100 кг/см=2.
** Болометр - высокочувствительный прибор для измерения излучения, широко применяемый при измерении пла-' нетных и звездных температур.
Все эти сведения в 1967 году были подтверждены советскими и американскими исследованиями. Зонды в этих странах были запущены с разницей в двое суток - 12 и 14 июня, - чтобы воспользоваться "окошком", позволяющим раз в 584 дня выбрать самую экономичную орбиту. Советский зонд "Венера-4" весил больше тонны, а "Маринер-5" - всего 245 кг. Советская станция должна была спуститься на поверхность, американская - облететь вокруг Венеры на расстоянии 4000 км. Оба зонда выполнили задачи, но "Венера-4" через час с четвертью после посадки перестала передавать сообщения. Так и не узнали, достигла она поверхности или еще в воздухе была раздавлена непомерным давлением.
Два года спустя "Венера-5" и "Венера-6" вновь были спущены на парашютах на планету, но раздавлены атмосферным давлением на высоте соответственно 25 км и 18 км от поверхности.
Разумеется, такие температура и давление для возникновения жизни неблагоприятны. Можно ли сказать, что она при них невозможна? Этого утверждать нельзя. Давление 1000 кГ/см^ например, существует в наших океанах на глубине 10 тысяч метров. Но если человек может погружаться не глубже 300 м, то рыбы живут даже на глубине II тысяч метров. Многие крупные млекопитающие, к примеру кашалот, живут на поверхности, но могут за несколько секунд погрузиться на несколько километров. Так что было бы неосторожно сразу делать вывод о невозможности жизни на Венере.