Коллектив авторов - Концепции современного естествознания. Учебное пособие
Так из физики было элиминировано понятие «инерциальной системы координат» и обосновано утверждение обобщенного принципа относительности: любая система координат является одинаково пригодной для описания явлений природы.
6. Квантовая механика
Вторым, по мнению лорда Кельвина (У. Томсона), недостающим элементом для завершения здания физики на рубеже XIX–XX в. было серьезное расхождение между теорией и экспериментом при исследовании законов теплового излучения абсолютно черного тела. Согласно господствующей теории оно должно быть непрерывным, континуальным. Однако это приводило к парадоксальным выводам вроде того, что общая энергия, излучаемая черным телом при данной температуре, равна бесконечности (формула Релея-Джина). Для решения проблемы немецкий физик Макс Планк выдвинул в 1900 г. гипотезу, что вещество не может излучать или поглощать энергию, иначе как конечными порциями (квантами), пропорциональными излучаемой (или поглощаемой) частоте. Энергия одной порции (кванта)
E = h × п,
где п – частота излучения;
h – универсальная константа.
Гипотеза М. Планка была использована А. Эйнштейном для объяснения фотоэффекта. А. Эйнштейн ввел понятие кванта света, или фотона. Он же предложил, что свет в соответствии с формулой М. Планка обладает одновременно волновыми и квантовыми свойствами. В сообществе физиков заговорили о корпускулярно-волновом дуализме, тем более что в 1923 г. было открыто еще одно явление, подтверждающее существование фотонов, – эффект А. Х. Комптона.
В 1924 г. Луи де Бройль распространил идею о двойственной корпускулярно-волновой природе света на все частицы материи, введя представление о волнах материи. Отсюда можно говорить и о волновых свойствах электрона, например о дифракции электрона, которые и были экспериментально установлены. Однако эксперименты Р. Фейнмана с «обстрелом» электронами щита с двумя отверстиями показали, что невозможно, с одной стороны, сказать, через какое отверстие пролетает электрон, т. е. точно определить его координату, а с другой стороны – не исказить картины распределения регистрируемых электронов, не нарушив характера интерференции. Это значит, что мы можем знать или координату электрона, или импульс, но не то и другое вместе.
Этот эксперимент поставил под вопрос само понятие частицы в классическом смысле точной локализации в пространстве и времени.
Объяснение «неклассического» поведения микрочастиц было впервые дано немецким физиком Вернером Гейзенбергом. Последний сформулировал закон движения микрочастицы, согласно которому знание точной координаты частицы приводит к полной неопределенности ее импульса, и наоборот, точное знание импульса частицы – к полной неопределенности ее координаты. В. Гейзенберг установил соотношение неопределенностей значений координаты и импульса микрочастицы:
Δх × ΔРx ≥ h,
где Δх – неопределенность в значении координаты;
ΔРx – неопределенность в значении импульса;
h – постоянная Планка.
Этот закон и соотношение неопределенностей получил название принципа неопределенности В. Гейзенберга.
Анализируя принцип неопределенностей, датский физик Нильс Бор показал, что в зависимости от постановки эксперимента микрочастица обнаруживает либо свою корпускулярную природу, либо волновую, но не обе сразу. Следовательно, эти две природы микрочастиц взаимно исключают друг друга и в то же время должны быть рассмотрены как дополняющие друг друга, а их описание на основе двух классов экспериментальных ситуаций (корпускулярной и волновой) является целостным описанием микрочастицы. Существует не частица «сама по себе», а система «частица – прибор». Эти выводы Н. Бора получили название принципа дополнительности.
Неопределенность и дополнительность оказываются в рамках такого подхода не мерой нашего незнания, а объективными свойствами микрочастиц, микромира в целом. Из этого следует, что статистические, вероятностные законы лежат в глубине физической реальности, а динамические законы однозначной причинно-следственной зависимости – лишь некоторый частный и идеализированный случай выражения статистических закономерностей.
7. Релятивистская квантовая механика
В 1927 г. английский физик Поль Дирак обратил внимание на то, что для описания движения открытых к тому времени микрочастиц (электрона, протона и фотона), т. к. они движутся со скоростями, близкими к скорости света, требуется применение специальной теории относительности. П. Дирак составил уравнение, которое описывало движение электрона с учетом законов и квантовой механики, и теории относительности А. Эйнштейна. Этому уравнению удовлетворяли два решения: одно решение давало известный электрон с положительной энергией, другое – неизвестный электрон-двойник, но с отрицательной энергией. Так возникло представление о частицах и симметричных им античастицах. Это породило вопрос: пуст ли вакуум? После эйнштейновского «изгнания» эфира он казался несомненно пустым.
Современные, хорошо доказанные представления говорят, что вакуум «пуст» только в среднем. В нем постоянно рождается и исчезает огромное количество виртуальных частиц и античастиц. Это не противоречит и принципу неопределенности, который имеет также выражение ΔЕ × Δt ≥ h. Вакуум в квантовой теории поля определяется как самое низкое энергетическое состояние квантового поля, энергия которого равна нулю только в среднем. Так что вакуум – это нечто по имени «ничто».
8. На пути построения единой теории поля
В 1918 г. Эмми Нетером было доказано, что если некоторая система инвариантна относительно некоторого глобального преобразования, то для нее существует определенная сохраняющая величина. Из этого следует, что закон сохранения энергии является следствием симметрии, существующих в реальном пространстве-времени.
Симметрия как философское понятие означает процесс существования и становления тождественных моментов между различными и противоположными состояниями явлений мира. Это означает, что, изучая симметрию каких-либо систем, необходимо рассматривать их поведение при различных преобразованиях и выделять во всей совокупности преобразований такие, которые оставляют неизменными, инвариантными некоторые функции, соответствующие рассматриваемым системам.
В современной физике употребляется понятие калибровочной симметрии. Под калибровкой железнодорожники понимают переход с узкой колеи на широкую. В физике под калибровкой первоначально понималось также изменение уровня или масштаба. В специальной теории относительности законы физики не изменяются относительно переноса или сдвига при калибровке расстояния. В калибровочной симметрии требование инвариантности порождает определенный конкретный вид взаимодействия. Следовательно, калибровочная инвариантность позволяет ответить на вопрос: «Почему и зачем в природе существуют такого рода взаимодействия?» В настоящее время в физике определено существование четырех типов физических взаимодействий: гравитационного, сильного, электромагнитного и слабого. Все они имеют калибровочную природу и описываются калибровочными симметриями, являющимися различными представлениями групп Ли. Это позволяет предположить существование первичного суперсимметричного поля, в котором еще нет различия между типами взаимодействий. Различия, типы взаимодействия являются результатом самопроизвольного, спонтанного нарушения симметрии исходного вакуума. Эволюция Вселенной предстает тогда как синергетический самоорганизующийся процесс: в процессе расширения из вакуумного суперсимметричного состояния Вселенная разогрелась до «большого взрыва». Дальнейший ход ее истории пролегал через критические точки – точки бифуркации, в которых происходили спонтанные нарушения симметрии исходного вакуума. Утверждение самоорганизации систем через самопроизвольное нарушение исходного типа симметрии в точках бифуркации и есть принцип синергии.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Примечания
1
Гейзенберг В. Физика и философия. Часть и целое. М., 1989. С. 24.