Рудольф Рэфф - Эмбрионы, гены и эволюция
Хотя большинство структурных генов существует в каждом гаплоидном геноме в одной копии, изменения частоты отдельных последовательностей - обычное явление в процессе эволюции. Последовательности, представленные в гаплоидном геноме эукариот не в одной, а в нескольких копиях, - это в большинстве случаев не структурные гены. Поэтому изменения частоты таких последовательностей никак не влияют ни на какую аминокислотную последовательность, т. е. ни на какой белок. Высказывались предположения, что последовательности ДНК, представленные в нескольких копиях, несут регуляторные функции, однако ни для одной из них это до сих пор не доказано. Фенотипические эффекты изменений частоты последовательностей ДНК неизвестны.
Класс происходящих в геноме событий, связанных с перемещением уже существующих последовательностей на новые участки в пределах данного генома, вообще говоря, не удается выявить при помощи обычных методов, используемых при изучении молекулярной эволюции. Тем не менее перемещение регуляторных последовательностей, при котором рядом со структурным геном вставляется вместо прежнего новый регулятор, обладающий иной специфичностью, может привести, как показал Берг (Berg), к фенотипически резко выраженным изменениям и послужить потенциально быстрым способом для морфологической эволюции, не требующим вообще никакой замены нуклеотидов. Содержание последовательностей оснований в целом при этом не изменяется - никакой модификации белков не происходит, но тем не менее налицо фенотипическое изменение. Только прямое определение нуклеотидной последовательности участка включения позволит выявить это событие, возникшее на молекулярном уровне.
Наконец, существуют крупномасштабные перестройки хромосом, при которых большие участки ДНК, содержащие большое число генов, инвертируются или переносятся на новые места в той же или в других хромосомах. Это нельзя считать собственно молекулярной эволюцией; однако в эволюции Metazoa часто наблюдаются хромосомные перестройки. Уайт (White) в своей книге «Цитология животных и эволюция» даже приписывает хромосомным перестройкам центральную роль в эволюции.
Обсуждавшиеся выше события представляют собой изменения, происходящие в существующем геноме. Недавние исследования Баслингера, Рускони и Бернстила (Busslinger, Rusconi, Birnstel) показывают, что изредка горизонтальный перенос генов может происходить между видами, связанными лишь отдаленным родством, причем в этом участвуют неортодоксальные механизмы, возможно, ретровирусы, способные пересекать границы между видами. Пример, изучавшийся Баслингером и его сотрудниками, касается кластера генов, кодирующих синтез гистона, который, по-видимому, был недавно перенесен от одного семейства морских ежей в другое; эти два семейства дивергировали примерно 65 млн. лет назад и, за исключением данного кластера генов, хорошо различаются по всем генам, определяющим синтез гистонов. В результате экспрессии перенесенного кластера генов происходит синтез функциональных белков. Значение такого рода событий для эволюции неизвестно.
Ряд важных аспектов геномной эволюции, очерченных в табл. 3-1, такие как интроны, умеренные повторы и сателлитная ДНК, а также организация и функция регуляторов разных типов, подробно рассматриваются в последующих главах. В настоящей главе мы сосредоточим внимание на молекулярной эволюции в более узком смысле, т.е. на заменах нуклеотидов в ДНК и аминокислотных заменах в белках. Поскольку большая часть наших знаний об эволюционных событиях на уровне генома получена в результате изучения структурных генов и их продуктов, существует четко выраженная тенденция экстраполировать способы и скорости эволюции структурных генов на гены, участвующие в морфогенезе и морфологической эволюции. Однако работы Вилсона (Wilson) и его сотрудников, обсуждаемые в дальнейших разделах этой главы, ясно показывают, что эволюция, происходящая путем замены нуклеотидов в структурных генах, мало связана с морфологической эволюцией. Тем не менее сведения об эволюции на молекулярном уровне дают неоценимый инструмент для выявления родственных связей между морфологически несходными организмами, а скорости молекулярной эволюции служат часами, с ходом которых можно сверять другие скорости.
Гены, белки и «молекулярные часы»
В большей части работ по молекулярной эволюции главное внимание уделялось изменениям структурных генов, выражающимся в изменениях последовательности аминокислот в кодируемых ими белках. Большое число аминокислотных последовательностей белков определяется и публикуется в очень полезном и постоянно пополняющемся справочном издании «Атлас аминокислотных последовательностей и структуры белков», издаваемом Дейхоф (Dayhoff). Установленные до сих пор несколько сот последовательностей составляют лишь небольшую долю огромного числа интересных и потенциально доступных белков. К сожалению, разные типы животных представлены в атласе очень неравномерно: для млекопитающих, число ныне живущих видов которых составляет всего 4060 (Anderson, Jones), приведены последовательности аминокислот в 350 белках, а для насекомых, число описанных современных видов которых приближается к миллиону (Daly, Doyen, Ehrlich), - в жалких 11 белках! Число известных последовательностей по другим крупным типам, таким как моллюски и иглокожие, также непропорционально мало. Тем не менее имеющихся данных достаточно для того, чтобы можно было определить скорости эволюции структурных генов, вывести вытекающие из них филогенетические следствия и оценить соотношение эволюции структурных генов и морфологической эволюции. Следует указать, что в отличие от данных палеонтологической летописи эволюционные данные, полученные на основании аминокислотных последовательностей белков, относятся только к линиям, существующим в настоящее время. Таким образом, если палеонтологическая летопись дает нам возможность увидеть вымершие и отвергнутые морфологические типы, то данные об аминокислотных последовательностях ни в одном случае не открывают специфичных признаков белков тех вымерших групп, от которых не осталось потомков.
Биохимия крайне консервативна. Метаболические пути и даже аминокислотные последовательности белков остаются неизменными на протяжении длительных отрезков геологического времени. Этим определяется уникальная ценность данных об аминокислотных последовательностях: они не зависят от морфологии. Благодаря этому аминокислотные последовательности таких консервативных белков, как цитохром с, позволяют выявить родственные связи между типами и даже царствами. Данные об аминокислотных последовательностях белков поддаются количественной оценке, причем положение каждой аминокислоты в каждом исследуемом белке является потенциальной переменной. Поскольку в любом положении может находиться любая из 20 существующих аминокислот, независимое происхождение или конвергенция одинаковых белков у двух организмов маловероятны. Например, в α-цепи гемоглобинов человека, шимпанзе и гориллы аминокислотные остатки (а их 141) располагаются в одинаковой последовательности. Возможное число различных последовательностей при такой длине равно 20141. Независимое происхождение глобинов человекообразных обезьян и глобинов человека, мягко говоря, маловероятно. Близкое сходство последовательностей свидетельствует о высокой вероятности тесного эволюционного родства; это правило лежит в основе построения количественных филогенетических схем для белков. Палеонтологическая летопись позволяет определить абсолютное время морфологической дивергенции организмов, из которых были выделены сравниваемые по аминокислотным последовательностям белки, а на основании этих определений можно вычислить скорости аминокислотных замен.
Когда впервые стало возможным количественное сравнение аминокислотных последовательностей белков, оно вызвало большой энтузиазм, поскольку этот новый подход казался весьма многообещающим для выяснения эволюционного родства. В 1962 г. Цукеркандль (Zuckerkandl) писал: «Благодаря недавно приобретенным знаниям о зависимостях между белками и генами изучение аминокислотных последовательностей белков может теперь дать наиболее точное и определенное представление об эволюционных взаимоотношениях и о некоторых фундаментальных механизмах эволюции». А в 1969 г. Дейхоф и Экк (Dayhoff, Eck) писали: «Заветная мечта биохимиков состоит в том, чтобы иметь возможность разработать полное, подробное, снабженное количественными параметрами филогенетическое древо - историю происхождения всех видов живых существ до самых ее истоков. Биологи питали эту надежду в течение долгого времени; теперь биохимия имеет реальную возможность выполнить это». Поистине задача, достойная самого Геккеля.