Барри Нейлбафф - Теория игр. Искусство стратегического мышления в бизнесе и жизни
Между этими двумя крайними уровнями находятся игры среднего уровня сложности в таких областях, как бизнес, политика и повседневная жизнь. По отношению к таким играм можно использовать два подхода. Первый сводится к применению компьютерных программ для построения деревьев и расчета решений[49]. С другой стороны, многие игры среднего уровня сложности решаются посредством логического анализа дерева игры без построения самого дерева. Проиллюстрируем этот подход на примере игры в одном из ТВ-шоу, в котором каждый участник пытается «переиграть, перехитрить и продержаться дольше» всех остальных участников.
Стратегии для участников игры SurvivorВ реалити-шоу Survivor канала CBS можно найти много интересных стратегий. В одном из эпизодов «Survivor: Таиланд» две команды (или два племени) сыграли в игру, которая стала прекрасной иллюстрацией применения принципа «смотреть вперед и рассуждать в обратном порядке» в теории и на практике[50]. На игровом поле между племенами установили двадцать один флажок; члены каждого племени должны были по очереди убирать эти флажки. Когда наступала очередь одного из племен, его представитель мог убрать 1, 2 или 3 флажка. Убирать 0 флажков (иными словами, передавать свою очередь) не разрешалось, так же как убирать четыре или больше флажков за один раз. Побеждала команда, которая забирала последний флажок, если он оставался один, или все, если оставалось два или три[51]. Проигравшее племя должно было изгнать своего же представителя, что ослабляло позиции племени в будущих испытаниях. На самом деле проигрыш в данном случае сыграл решающую роль, и в итоге член другого племени выиграл главный приз – миллион долларов. Таким образом, способность выбрать правильную стратегию для этой игры была весьма ценной.
Участники шоу были разделены на два племени – Сук Джай и Чуай Ган; племя Сук Джай делало первый ход. В этом племени начали с того, что убрали 2 флажка, оставив на поле 19 флажков. Прежде чем читать дальше, сделайте небольшую паузу и подумайте: сколько флажков вы решили бы убрать на их месте?
Запишите где-нибудь ответ на этот вопрос и продолжайте читать. Для того чтобы понять, как следует играть в эту игру, и сопоставить правильную стратегию с тем, как на деле сыграли оба племени, обратите внимание на два показательных момента. Во-первых, перед началом игры оба племени получили по несколько минут на обсуждение этого испытания. Один из членов племени Чуай Ган, афроамериканец Тед Роджерс, который был разработчиком программного обеспечения, отметил: «В конце игры мы должны оставить их с четырьмя флажками». Это действительно так: оставшись с 4 флажками, племя Сук Джай должно убрать 1, 2 или 3 флажка. В таком случае племени Чуай Ган останется только дождаться своей очереди, убрать 3, 2 или 1 флажок соответственно – и победить. В племени Чуай Ган правильно поняли и использовали эту возможность: когда оставалось 6 флажков, они убрали два из них.
Но есть еще один показательный момент. На предыдущем ходе, когда племя Сук Джай забрало 3 флажка из оставшихся 9, одна из представительниц этого племени Ши Энн, которая умела четко формулировать мысли и по праву гордилась своими аналитическими способностями, вдруг осознала: «Если Чуай Ган возьмет два флажка, нам конец». Это означало, что племя Сук Джай только что сделало неправильный ход. Что же следовало делать дальше в этой ситуации?
Ши Энн или одному из ее соплеменников следовало бы размышлять так же, как это сделал Тед Роджерс, и попытаться оставить другое племя с четырьмя флажками, но применив эту логику к следующему ходу этого племени. Как оставить другое племя с 4 флажками на его следующем ходе? Оставив его с 8 флажками на предыдущем! Когда это племя заберет 1, 2 или 3 флажка из восьми, вы возьмете 3, 2 или 1 флажок, оставив его с четырьмя флажками, как и планировали. Следовательно, племени Сук Джай необходимо было бы поменяться местами с племенем Чуай Ган и взять только 1 флажок из 9. Аналитический ум Ши Энн начал активно работать, но с опозданием на один ход! По всей видимости, у Теда Роджерса аналитические способности были еще лучше. Но так ли это?
Почему племя Сук Джай оказалось с 9 флажками на предыдущем ходе? Потому что в Чуай Ган убрали с поля 2 флажка из 11 на своем предыдущем ходе. Теду Роджерсу следовало продолжить свои рассуждения на один ход дальше. Племени Чуай Ган нужно было забрать 3 флажка, оставив Сук Джай с 8 флажками – а это проигрышная позиция.
Эти же рассуждения можно продолжить в обратном порядке. Для того чтобы оставить другое племя с 8 флажками, вам следует оставить его с 12 флажками на предыдущем ходе; для этого необходимо оставить его с 16 флажками на ход раньше и с 20 флажками на ход до этого хода. Таким образом, племени Сук Джай следовало начать игру, убрав с игрового поля только 1 флажок, а не 2, как случилось на самом деле. Такой ход обеспечил бы этому племени неизбежную победу, оставив племя Чуай Ган с 20, 16, … 4 флажками на очередных ходах[52].
А теперь вспомним первый ход племени Чуай Ган. У них было 19 флажков. Если бы в Чуай Ган придерживались своей же логики, им следовало взять 3 флажка, оставив Сук Джай с 16 флажками и тем самым обрекая это племя на неизбежное поражение. Начиная с любого этапа игры, на котором соперник произвел неправильный ход, команда, делавшая очередной ход, могла перехватить инициативу и выиграть. Но племя Чуай Ган тоже играло не идеально[53].
В таблице показаны как фактические, так и правильные ходы обоих племен на каждом этапе игры. (Запись «Нет хода» означает, что любой ход проигрышный при условии, что соперник делает правильный ход.) Из этой таблицы видно, что практически во всех случаях оба племени делали неправильный выбор. Исключением стал только ход племени Чуай Ган, когда они оказались с 14 флажками, но даже он, скорее всего, был случайным, поскольку на следующем ходе племя убрало с поля 2 флажка из 11, тогда как следовало взять 3 флажка.
Не судите эти племена слишком строго: для того чтобы научиться играть даже в самые простые игры, требуются время и опыт. На своих занятиях мы проводили эту игру парами или в группах студентов и пришли к выводу, что даже студентам первого курса университетов Лиги плюща[54] требуется сыграть три или даже четыре раунда, прежде чем они полностью усвоят логику игры и начнут играть правильно с первого хода. (Кстати, какое число флажков выбрали вы, когда мы попросили вас сделать это, и как аргументировали этот выбор?) Следует отметить, что люди обучаются быстрее, когда наблюдают за игрой со стороны, чем когда играют сами. Возможно, позиция наблюдателя позволяет увидеть общую картину игры и строить свои рассуждения более спокойно, чем в роли участника.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Примечания
1
Речь идет о рассказе Хорхе Борхеса «Пьер Менар, автор “Дон Кихота”». Прим. пер.
2
Бранденбургер А., Нейлбафф Б. Конкурентное сотрудничество в бизнесе. – М.: Кейс, 2012.
3
Master of Business Administration (магистр бизнес-администрирования, англ.) – квалификационная степень в менеджменте. Прим. ред.
4
Были присуждены еще три Нобелевские премии за исследования в сфере создания механизмов выявления предпочтений и информационной экономики (оба этих направления тесно связаны с теорией игр): в 1996 году – Уильяму Викри и Джеймсу Миррлису; в 2001 году – Джорджу Акерлофу, Майклу Спенсу и Джозефу Стиглицу; в 2007 году – Леониду Гурвичу, Эрику Маскину и Роджеру Майерсону.
5
В русском прокате – «Игры разума». Прим. пер.
6
Шеллинг Т. Стратегия конфликта. – М.: ИРИСЭН, 2007.
7
Портер М. Конкурентная стратегия. Методика анализа отраслей конкурентов. – М.: Альпина Паблишер, 2011.
8
Для обозначения такой стратегии поиска используется специальный термин: «минимизация энтропии».
9
«Оставшийся в живых»; русский аналог – «Последний герой». Прим. пер.
10
Ричарду пошло бы на пользу, если бы он подумал также о последствиях невыплаты налогов на выигранный им 1 миллион долларов. 16 мая 2006 года он был приговорен к 51 месяцу тюремного заключения за уклонение от уплаты налогов.