KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Науки: разное » Марьяна Безруких - Возрастная физиология: (Физиология развития ребенка)

Марьяна Безруких - Возрастная физиология: (Физиология развития ребенка)

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Марьяна Безруких, "Возрастная физиология: (Физиология развития ребенка)" бесплатно, без регистрации.
Перейти на страницу:

Процесс дифференцировки нейронов, начинаясь также в раннем постнатальном периоде, продолжается в течение длительного периода индивидуального развития, подчиняясь как генетическому фактору, так и внешнесредовым воздействиям.

Первыми созревают афферентные и эфферентные пирамиды нижних слоев коры, позже — расположенные в более поверхностных слоях. Постепенно дифференцируются различные типы вставочных нейронов. Раньше созревают веретенообразные клетки, переключающие афферентную импульсацию из подкорковых структур к развивающимся пирамидным нейронам. Звездчатые и корзинчатые клетки, обеспечивающие взаимодействие нейронов и циркуляцию возбуждения внутри коры, созревают позже. Заканчиваясь возбудительными и тормозными синапсами на телах нейронов, эти клетки создают возможность структурирования импульсной активности нейронов (чередование разрядов и пауз), что является основой нервного кода. Дифференцировка вставочных нейронов, начавшаяся в первые месяцы после рождения, наиболее интенсивно происходит в период от 3 до 6 лет. Их окончательная типизация в переднеассоциативных областях коры отмечается к 14-летнему возрасту.

Функционально важным фактором формирования нейронной организации коры больших полушарий является развитие отростков нервных клеток — дендритов и аксонов, образующих волокнистую структуру.

Аксоны, по которым в кору поступает афферентная импульсация, в течение первых трех месяцев жизни покрываются миелиновой оболочкой, что существенно ускоряет поступление информации к нервным клеткам проекционной коры.

Вертикально ориентированные апикальные дендриты обеспечивают взаимодействие клеток разных слоев, и в проекционной коре они созревают в первые недели жизни, достигая к 6-месячному возрасту III слоя. Дорастая до поверхностных слоев, они образуют конечные разветвления.

Базальные дендриты, объединяющие нейроны в пределах одного слоя, имеют множественные разветвления, на которых образуются множественные контакты аксонов других нейронов. С ростом базальных дендритов и их разветвлений увеличивается воспринимающая поверхность нервных клеток.

Специализация нейронов в процессе их дифференциации и увеличение количества и разветвленности отростков создают условия для объединения нейронов разного типа в клеточные группировки — нейронные ансамбли. В нейронные ансамбли включаются также клетки глии и разветвления сосудов, обеспечивающие клеточный метаболизм внутри нейронного ансамбля.

В развитии коры и формировании ансамблевой организации в онтогенезе выделяют следующие этапы (рис. 50).

Рис. 50. Возрастные преобразования ансамблевой организации коры больших полушарий от рождения до 20 лет. Схема построена на основе результатов морфологического исследования мозга человека

1 — новорожденные; 2 — 3 мес жизни; 3 — 6 мес; 4 — 1 год; 5 — 3 года; 6 — 5–6 лет; 7 — 9-10 лет; 8 — 12–14 лет; 9 — 18–20 лет


К моменту рождения вертикально расположенные пирамидные клетки в нижнем слое и их апикальные дендриты создают прообраз колонки, которая у новорожденных бедна межклеточными связями.

1-й год жизни характеризуется увеличением размеров нервных клеток, дифференциацией звездчатых вставочных нейронов, увеличением дендритных и аксонных разветвлений. Выделяется ансамбль нейронов как структурная единица, окруженная тонкими сосудистыми разветвлениями.

К 3 годам ансамблевая организация усложняется развитием гнездных группировок, включающих разные типы нейронов.

В 5–6 лет наряду с продолжающейся дифференциацией и специализацией нервных клеток нарастают объем горизонтально расположенных волокон и плотность капиллярных сетей, окружающих ансамбль. Это способствует дальнейшему развитию межнейрональной интеграции в определенных областях коры.

К 9-10 годам усложняется структура отростков интернейронов и пирамид, увеличивается разнообразие ансамблей, формируются широкие горизонтальные группировки, включающие и объединяющие вертикальные колонки.

В 12–14 лет в нейронных ансамблях четко выражены разнообразные специализированные формы пирамидных нейронов, высокого уровня дифференцировки достигают интернейроны; в ансамблях всех областей коры, включая ассоциативные корковые зоны, за счет разветвлений отростков удельный объем волокон становится значительно больше удельного объема клеточных элементов.

К 18 годам ансамблевая организация коры по своим характеристикам достигает уровня взрослого человека.

Закономерности созревания структур мозга в онтогенезе. Основная закономерность в характере созревания мозга как многоуровневой иерархически организованной системы проявляется в том, что эволюционно более древние структуры созревают раньше. Это прослеживается в ходе созревания структур мозга по вертикали: от спинного мозга и стволовых образований головного мозга, обеспечивающих жизненно важные функции, к коре больших полушарий. По горизонтали развитие идет от проекционных отделов, включающихся в обеспечение элементарных контактов с внешним миром уже с момента рождения, к ассоциативным, ответственным за сложные формы психической деятельности.

Для развития каждого последующего уровня необходимо полноценное созревание предыдущего. Так, для созревания проекционной коры необходимо формирование структур, через которые поступает сенсорно-специфическая информация. Для развития в онтогенезе ассоциативных корковых зон необходимо формирование и функционирование первичных проекционных отделов коры. Так, нарушение в раннем возрасте проекционных корковых зон приводит к недоразвитию областей более высокого уровня (вторичные проекционные и ассоциативные отделы). Этот принцип развития структур мозга в онтогенезе Л.С. Выготский обозначил как направление «снизу вверх».

Следует подчеркнуть, что позже созревающие структуры не просто надстраиваются над уже существующими, а влияют на их дальнейшее развитие. Так, при исследовании активности отдельных нейронов было показано, что только после созревания проекционной корковой зоны нейроны релейного ядра таламуса приобретают специализированную реакцию зрелого типа в ответ на афферентный стимул.

Сформированная многоуровневая организация мозга носит иерархический характер. Ведущую роль в осуществлении целостной интегративной функции мозга приобретают высшие отделы коры больших полушарий, управляющие подчиненными им структурами более низкого уровня. Такой принцип иерархической организации структур зрелого мозга Л.С. Выготский обозначил как направление «сверху вниз».

Длительный и гетерохронный характер созревания структур мозга определяет специфику функционирования мозга в различных возрастных периодах.

Методики изучения функциональной организации мозга

Одним из первых методов оценки функциональной роли разных структур мозга явился метод повреждения или удаления участков мозга с помощью хирургических, химических и температурных воздействий. Другой рано возникший метод — это метод прямой электрической стимуляции, который применялся как в экспериментах на животных, так и во время нейрохирургических операций, когда находящийся в сознании больной мог оценить свои ощущения при раздражении различных точек коры и подкорковых структур. Например, при раздражении проекционной зрительной коры больной как бы видел цветовые пятна, вспышки пламени; стимуляция вторичных зрительных полей вызывала сложные зрительные образы, раздражение определенных подкорковых ядер — звуковые и зрительные галлюцинации. С помощью электрической стимуляции во время операции была уточнена локализация речевых зон, физиологические основы речи, памяти и эмоций.

Электроэнцефалография. В настоящее время наиболее распространенным и адекватным для изучения функциональной организации мозга является метод регистрации электроэнцефалограммы (ЭЭГ) — суммарной биоэлектрической активности, отводимой с поверхности головы. Многоканальная запись ЭЭГ в различных отведениях позволяет одновременно регистрировать электрическую активность функционально различных областей коры (рис. 51).

В ЭЭГ выделяются следующие типы ритмических колебаний: дельта-ритм 0,5–3 Гц; тета-ритм 4–7 Гц; альфа-ритм 8-13 Гц, основной ритм ЭЭГ, преимущественно выраженный в каудальных отделах коры (затылочной и теменных); бета-ритм 15–30 Гц; гамма-колебания > 30–60 Гц.

Эти ритмы различаются не только по своим частотным, но и функциональным характеристикам. Их амплитуда, топография, соотношение являются важным диагностическим признаком и критерием функциональной активности различных областей коры при реализации психической деятельности. Подробно этот вопрос будет рассмотрен в соответствующих главах.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*