Евгений Боровский - Терапевтическая стоматология. Учебник
Органическое вещество эмали представлено белками, липидами и углеводами. В белках эмали определены следующие фракции: растворимая в кислотах ЭДТУ — 0,17 %, нерастворимая — 0,18 %, пептиды и свободные аминокислоты — 0,15 %. По аминокислотному составу эти белки, общее количество которых составляет 0,5 %, имеют признаки кератинов. Наряду с белком в эмали обнаружены липиды (0,6 %), цитраты (0,1 %), полисахариды (1,65 мг углеводов на 100 г эмали). Таким образом, эмаль имеет следующий состав: неорганические вещества — 95 %, органические — 1,2 %, вода — 3,8 %. В соответствии с данными других авторов содержание органических веществ достигает 3 %.
Рис. 3.19. Шлиф корня зуба с дентинными канальцами х 400
Дентин (dentinum). Дентин, составляющий основную массу зуба, менее обызвествлен, чем эмаль. В нем содержится 70–72 % неорганического и 28–30 % органического вещества и воды. Основу неорганического вещества составляют фосфат кальцин (гидроксиапатит), карбонат кальция и в небольшом количестве фторид кальция. В его составе имеются также многие макро- и микроэлементы.
Органическое вещество дентина состоит из белков, липидов и полисахаридов. Аминокислотный состав белков типичен для коллагенов: большое количество глицина, пролина, оксипролина и отсутствие серосодержащих аминокислот.
Основное вещество дентина пронизано множеством дентинных трубочек (рис. 3.19). количество которых колеблется от 30 000 до 75 000 на 1 мм2 дентина. В дентинных трубочках (канальцах) циркулирует дентинная жидкость, которая доставляет органические и неорганические вещества, участвующие в обновлении дентина.
В дентине происходят выраженные обменные процессы, что обусловлено его составом и структурой. В первую очередь это относится к белку дентина. Известно, что молекула коллагена способна к обновлению аминокислотного состава. Наличие дентинных канальцев и циркулирующей в них дентинной жидкости создает необходимые условия для обмена органических и неорганических веществ. Клиническим подтверждением наличия обменных процессов является изменение структуры и состава дентина при воздействии различных факторов на твердые ткани зуба: хронической механической травмы, химических, возрастных изменений и др. Гистологическими исследованиями установлено, что внутренние отделы околопульпарного дентина (предентина) коронки зуба имеют нервные окончания, которые являются чувствительными, а возможно, и эфферентными.
Большинство авторов считают, что нервные волокна в обызвествленный дентин на всю его толщину не проникают. Электронно-микроскопическими исследованиями также не установлено наличия нервных волокон в обызвествленном дентине, что значительно затрудняет трактовку бесспорного клинического факта — чувствительности дентина (передача боли при препарировании твердых тканей и воздействии на них химических и температурных раздражителей).
Существуют две теории, пытающиеся объяснить эти факты. Avey, Repp (1959) установили, что дентинные отростки одонтобластов на всем протяжении содержат большое количество ацетилхолинэстеразы, которая, как известно, играет важную роль в передаче нервного импульса. На основании этого авторы предположили, что восприятие и передача болевых раздражений как раз и происходят по отросткам одонтобластов. Этим самым авторы наделили их свойством, которое присуще нервным волокнам. Branstrfim (1966) выдвинул теорию гидродинамического механизма возникновения боли при воздействии раздражителей. Автор исходил из того, что дентин представляет собой ткань. пронизанную многочисленными трубочками, заполненными дентинной жидкостью. Любое воздействие на дентин вызывает перемещение этой жидкости в рецепторный аппарат пульпы зуба. Экспериментальными исследованиями установлено, что при высушивании поверхности дентина, а также при перегревании тканей зуба в процессе препарирования происходит перемещение ядра одонтобласта в отросток, что может свидетельствовать о выраженных физико-химических изменениях в нем.
Цемент (cementum). Прослойка ткани, покрывающая корень зуба, состоит из 68 % неорганических и 32 % органических веществ. По химическому составу и структуре цемент напоминает грубоволокнистую кость. Основное вещество цемента, пропитанное солями кальция, пронизано коллагеновыми волокнами, которые соединяются с такими же волокнами костной ткани альвеолы. Различают бесклеточный цемент, располагающийся по всей поверхности корня, и клеточный, который покрывает верхушку корня, а в многокорневых и область бифуркации. В отличие от кости цемент не имеет кровеносных сосудов.
Функция эмали зуба. При рассмотрении химического состава и структуры эмали зуба выявляется ряд особенностей, так как это бессосудистая и самая твердая ткань организма. Кроме того, эмаль остается относительно неизменной в течение всей жизни человека. Указанные свойства объясняются функцией, которую она выполняет.
Эмаль зуба защищает дентин и пульпу от внешних механических, химических и температурных раздражителей.
Только благодаря этому зуб осуществляет свое назначение — откусывание и измельчение пищи. Структурные особенности эмали — самой минерализованной и твердой ткани в организме — приобретены в процессе филогенеза.
Выделяют 4 стадии развития зубов в филогенезе (И.Г. Лукомский). В I стадии у низших позвоночных, главным образом у рыб, форма зуба коническая и представляет собой ороговевшие сосочки слизистой оболочки — гомодонтный прикус. Во II стадии зубы по форме отличаются друг от друга — гетеродонтный прикус. В III стадии (высшие позвоночные) проявляется четкое дифференцирование зубов. В IV стадии зубы человека — прикус начинает редуцироваться. Автор имеет в виду уменьшение количества зубов с 44 у животных до 32 у человека. При этом произошли выраженные изменения в составе и структуре тканей зуба.
Таким образом, в процессе эволюции была сформирована ткань, надежно защищающая подлежащие дентин и пульпу от любого рода раздражителей. Во время жевания зубы человека выдерживают значительное давление. При сокращении жевательной мускулатуры давление на зубы достигает 130 кг. Выдержать такое давление ткани зуба могут только при значительной твердости, что достигается благодаря большой минерализации. При этом эмаль утратила ряд свойств, характерных для других тканей. Вследствие того, что в ней отсутствуют нервные волокна и рецепторы, а также сосуды, она лишена способности реагировать на всякого рода раздражители и восстанавливать утраченную часть ткани — способности регенерации. Наряду с этим эмаль в течение всей жизни человека способна поддерживать постоянство своего состава. Единственное сохранившееся свойство, которое играет важную роль в поддержании физиологических особенностей эмали, является проницаемость — способность пропускать воду и растворенные в ней ионы ряда веществ.
Рис. 3.20. Проникновение радиоактивного глицина в ткани зуба с его поверхности. Авторадиограмма.
Явление проницаемости эмали зуба осуществляется благодаря омыванию зуба (эмали) снаружи ротовой жидкостью, со стороны пульпы — тканевой жидкостью и наличию пространств в эмали, заполненных жидкостью.
Возможность проникновения красок, воды и некоторых ионов известна с конца прошлого и начала нашего столетия. Так, Bedecker утверждал, что зубная лимфа может проходить через эмаль, выполняя двойную функцию: нейтрализовать молочную кислоту и медленно увеличивать плотность эмали зуба за счет содержащихся в ней минеральных солей.
В настоящее время проницаемость эмали изучена довольно подробно, что позволило пересмотреть ряд ранее существующих представлений. Если ранее считали, что вещества в эмаль поступают по пути пульпа — дентин — эмаль, то в настоящее время не только установлена возможность поступления веществ в эмаль из слюны, но и доказано, что этот путь является основным (рис. 3.20). Эмаль проницаема в обоих направлениях: от поверхности эмали к дентину и пульпе и от пульпы к дентину и поверхности эмали. На этом основании эмаль зуба считают полупроницаемой мембраной. Fosdier указывает, что проницаемость есть главная причина созревания эмали зубов после прорезывания. По его мнению, в зубе проявляются обычные законы диффузии. При этом вода (эмалевая жидкость) проходит со стороны малой молекулярной концентрации в сторону высокой, а молекулы и диссоциированные ионы проходят со стороны высокой концентрации в сторону низкой концентрации.
В настоящее время имеются бесспорные доказательства проникновения в эмаль и дентин зуба из слюны многих неорганических и органических веществ. Показано, что при нанесении на поверхность интактной эмали раствора радиоактивного кальция (45Са) он уже через 20 мин обнаруживался в поверхностном слое. При более длительном контакте раствора с зубом 45Са проникал на всю глубину эмали до эмалево-дентинного соединения. В аналогичных исследованиях установлено включение радиоактивного фосфора в дентин и эмаль интактного зуба животного после внутривенного введения или аппликации раствора Na2HP32O4 на поверхность зуба.