KnigaRead.com/

Тулио Редже - Этюды о Вселенной

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Тулио Редже, "Этюды о Вселенной" бесплатно, без регистрации.
Перейти на страницу:

Особенно таинственным казался во времена Эйнштейна так называемый фотоэлектрический эффект, открытый Герцем в 1887 г. Ультрафиолетовое излучение, падающее на металлическую поверхность в пустоте, может поглощаться атомами металла; излучение, передавая энергию электронам, выбивает их из металла. Свет представляет собой быстро колеблющиеся электрические и магнитные поля, как раз и вызывающие выход электронов из металла. Казалось бы, увеличение интенсивности света должно привести к увеличению средней энергии электронов. Однако, как ни странно, вылетающие электроны все имеют одинаковую энергию, хотя их число увеличивается.

Для объяснения этого явления Эйнштейн выдвинул гипотезу квантов света (названных впоследствии фотонами), согласно которой световое излучение существует в виде квантов, энергия которых принимает дискретные значения , где h – постоянная Планка, а ν – частота света.

Если атом поглощает фотон, то энергия последнего идет на преодоление некоторого заданного энергетического барьера (энергии связи), чтобы оторвать электрон от атома, и на сообщение ему энергии для вылета из металла. Следовательно, энергия вылетевшего электрона зависит только от частоты падающего излучения.

Согласиться с существованием фотона означало возвратиться к дискредитированной корпускулярной теории Ньютона, и поэтому работа Эйнштейна была воспринята крайне сдержанно. Миликен впоследствии вспоминал, что он «в 1915 г. был вынужден полностью признать (на основе эксперимента) справедливость вывода Эйнштейна, несмотря на кажущуюся его неразумность, связанную с тем, что он, казалось бы, опровергал все, что мы знали о волновой природе света». Почти восемнадцать лет, несмотря на свой успех, Эйнштейн был единственным, кто действительно считал гипотезу фотона справедливой; полемика на эту тему наконец прекратилась, когда в 1923 г. был открыт эффект Комптона, состоящий в том, что фотон сталкивается с электроном и сообщает ему энергию отдачи (точно так же, как при столкновении бильярдных шаров). Гипотеза квантов света оказалась решающей для построения квантовой механики, и, хотя Эйнштейн не был одним из ее непосредственных создателей, его можно считать их предшественником.

Свидетельством поразительной творческой активности Эйнштейна явилось появление всего через несколько недель после опубликования первой работы новой, посвященной броуновскому движению. в 1828 г. английский биолог Роберт Броун собирал пыльцу различных растений, которую он хранил в ампулах в виде жидкой суспензии. Под микроскопом зернышки казались подверженными непрерывному и длившемуся бесконечно действию какой-то беспорядочной силы. Предлагались различные объяснения этого явления, в том числе основанные на представлении о «живой» воде!

Растительное происхождение пыльцы не имеет никакого отношения к природе описанного явления. Эйнштейн в своей работе количественно показал, что в основе броуновского движения лежат непрерывные столкновения атомов жидкости с зернышками пыльцы. Дрожание, замеченное Броуном, являлось свидетельством атомной структуры вещества и беспорядочного движения атомов, предвосхищенного Максвеллом. Работа Эйнштейна запоздала для спасения Больцмана, морально искалеченного жесткой оппозицией школы Оствальда и Маха; тем не менее она ознаменовала собой окончательное признание существования атомов, которое нам уже кажется очевидным фактом. Трудно себе представить, что в конце прошлого века некоторые весьма авторитетные физические школы все еще отрицали этот факт.

Работа, посвященная броуновскому движению, представляет собой продолжение предыдущей и, по существу, тесно связана с фотоэлектрическим эффектом. в основе обоих явлений лежит теория флуктуаций. Если, например, подвесить в полости, заполненной излучением, зеркальце, то оно подвергнется непрерывным ударам фотонов, и его поведение также будет очень похоже на дрожание гранул пыльцы Броуна. на сходство этих явлений обратил внимание один Эйнштейн.

Третья работа Эйнштейна увидела свет все в том же пророческом 1905 г., и она возвестила о рождении теории относительности. Мы уже обсуждали основы этой теории. Здесь мне хотелось бы напомнить, что говорил один из первых толкователей писем Эйнштейна эпистолог (но и физик также) Джеральд Холтон. По его словам, Эйнштейн необычайно тонко и ясно улавливал аналогии между физическими явлениями, казавшимися совершенно разными, и представлял те несовершенства или асимметрии, которые возникали, когда эти аналогии не соблюдались до конца.

Столкнувшись с несовершенством теорий, Эйнштейн сначала анализировал ее недостатки, затем привлекал для их устранения какие-то новые общие принципы и заканчивал работу, обращая внимание на некоторые экспериментально наблюдаемые эффекты, которые следовали из этих принципов.

При создании теории относительности неприятность заключалась в существовании выделенных систем отсчета, покоящихся относительно эфира, в которых скорость распространения света в любую сторону была равна 300000 км/с. в других системах отсчета скорость движения относительно выделенных должна была зависеть от направления движения, что неизбежно следовало из закона сложения скоростей Галилея.

Эйнштейн очень четко представлял себе, что симметрия между различными наблюдателями, даже находящимися в относительном движении, играет принципиальную роль, гораздо более важную, чем закон сложения скоростей, который может быть соответствующим удобным способом видоизменен. Для подавляющего большинства современников Эйнштейна справедливым было обратное утверждение.

На самом деле свет при преследовании должен был все время уходить с неизменной скоростью, которая становилась таким образом универсальной постоянной, причем одной из важнейших в физике. с помощью простых интуитивных рассуждений, не требовавших привлечения сложной математики (не выходя за рамки действий с квадратными уравнениями и простого дифференцирования), Эйнштейн развязал узел сложных аномалий и парадоксов, затемнявших теорию электромагнитного поля.

Иногда утверждают, что до Эйнштейна теорию относительности открыли Лоренц и Пуанкаре; я охотно уступаю право дискуссии на эту интересную тему историкам науки. Лично я сказал бы, что в работе 1905 г. теория предстает перед нами во всем своем великолепии и открывает такие новые горизонты физики, какие даже не просматриваются в работах Лоренца. Речь, наконец, идет о новом научном методе, нашедшем применение при исследовании любых физических явлений, а не только электромагнитных.

В том же году Эйнштейн опубликовал небольшую работу, в которой на основе всего нескольких исходных предположений пришел к выводу об эквивалентности массы и энергии, выражаемой теперь уже знаменитой формулой E = mc2. Между тем научная общественность начинала интересоваться деятельностью Эйнштейна, не проявляя, правда, того единодушия, которого можно было бы ожидать. Кауфманн провел в 1906 г. некоторые опыты с целью проверки теории, называемой им теорией Лоренца-Эйнштейна, и в конце того же года заявил, что отсутствие определенных результатов в пользу теории ясно указывает на противоречие данной теории с экспериментом. Это были последние печально знаменитые слова, высказанные в таком духе!

Однако некоторые из «великих» (среди них был Планк) сознавали исключительную важность этих работ Эйнштейна, и он быстро обрел известность в научном мире.

За 1905 г. последовали годы тяжелой борьбы, которую Эйнштейн, по существу, вынужден был вести в двух направлениях. Во-первых, как мы уже упоминали, ему приходилось отстаивать свое представление о фотоне.

Второе направление борьбы было связано с созданием общей теории относительности, следующей естественным образом из специальной теории относительности при рассмотрении гравитационных полей. Подобные попытки развития теории предпринимались также Нордстремом и другими современниками Эйнштейна. Работа по построению этой теории отвлекала ученых от дебатов, захвативших весь мир физиков после создания модели атома Бором.

Наконец, после нескольких неудачных попыток увидел свет окончательный вариант теории 1916 г., обозначавший новую веху в науке и культуре нашего столетия.

В этой теории на современном математическом языке утверждаются некоторые простые физические принципы (как, например, принцип эквивалентности), имеющие в то же время поистине революционное значение.

Как было показано в этой работе, присутствие вещества определяет геометрию пространства таким же образом, как геометрические свойства пространства определяют движение вещества в нем.

Легко высказать приведенные слова, но гораздо труднее выразить их на практике с помощью соответствующих уравнений поля; для этой деятельности Эйнштейна очень полезным оказалось сотрудничество с математиком Марселем Гроссманом.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*