Станислав Славин - 100 великих тайн космонавтики
Однако 20-километровые тросы, лебедка, ряд других элементов были уже изготовлены и лежат ныне на складе. Но надо еще 1,5 миллиона долларов, чтобы довести задуманное до конца. Найти такую сумму пока не удается.
Между тем для изготовления троса был использован весьма прочный синтетический материал типа кевлар. Диаметр — 3 мм, масса 20-километрового троса — всего 70 кг. А ныне создаются новые материалы с еще лучшими характеристиками. И такой «шнур», но длиной уже не 20, а 50 км, может иметь массу менее 100 кг.
Это позволяет уже ныне приступить к изготовлению не экспериментальной, а штатно эксплуатируемой тросовой системы многократного использования для спуска с орбиты на Землю грузовых кораблей, капсул, а также отработавших свой ресурс модулей, ферм, панелей. Экономический выигрыш составит через несколько лет сотни миллионов долларов в год, а в перспективе, возможно, и миллиарды долларов.
Кроме того, трос из электропроводящих материалов может быть использован, как уже говорилось, еще и в качестве источника энергии для зарядки аккумуляторов космических объектов или питания бортовой аппаратуры.
Тут, наверное, стоит на время прервать рассказ, чтобы пояснить суть дела. В 1990 году доктор физико-математических наук Владимир Белецкий и кандидат физико-математических наук Евгений Левин опубликовали статью, в которой подробно описали все возможные применения тросовых систем. Среди прочего речь там шла и о том, что с помощью электропроводящих тросов в космосе можно осуществлять в высшей степени интересные эксперименты по получению электроэнергии.
Как же они будут происходить? Скажем, астронавты откроют люк грузового отсека орбитального космолета. В нем находится лебедка и приемная штанга длиной около 10 м. Субспутник на тросе выпущен вверх.
«Из него в разные стороны выдвинуты электрические датчики. С точки зрения действия на субспутник микротяжести его расположение вверху ничем не отличается от нижней позиции. Но в верхнем положении будет меньше аэродинамическое торможение, поскольку плотность воздуха там меньше, — писали наши ученые. — Можно ли пропускать по такому тросу постоянный ток? Казалось бы, нет. Контур не замкнут. Но ведь он движется в проводящей ионосферной плазме. Ток, текущий по тросу, может замыкаться через окружающую среду. Для этого на концах троса должны быть установлены специальные контактные устройства».
Тут мы прервем цитату, чтобы отметить прозорливость наших исследователей. Все именно так и произошло на самом деле, когда «челнок» «Колумбия» после выхода на орбиту выпустил из своего грузового отсека итальянский спутник. По мере того как оба искусственных тела расходились друг от друга, между ними возникал электрический потенциал.
В итоге удалось получить силу тока 0,5 А при напряжении 3500 В. Возможно, эти результаты удалось бы еще улучшить, но тут оборвался трос длиной около 20 км, связывающий «челнок» и спутник, так что эксперимент пришлось буквально прервать.
Тем не менее и достигнутого хватило для того, чтобы убедиться в перспективности продолжения опытов. «Тот факт, что измеренная сила тока оказалась втрое больше расчетной, сулит хорошие перспективы применения данного метода для получения энергии на околоземной орбите даже тогда, когда космический аппарат находится в тени планеты и его солнечные батареи работать не могут», — заявил ведущий научный специалист проекта из Центра космических полетов имени Дж. Маршалла Ноби Стоун.
Международная космическая станция (МКС), как известно, будет функционировать как минимум до 2015 года. На смену ей должны прийти долговременные орбитальные комплексы нового поколения, в том числе с использованием тросовых технологий. Как показывают конструкторские проработки, это будут многоблочные станции, соединенные несколькими канатами и лифтом.
Корпорация «Энергия», чтобы закрепить российский приоритет, получила патент на такую орбитальную станцию, предоставив экспертам соответствующие чертежи и расчеты. Этот комплекс может быть построен примерно к 2050 году.
Не дремлют, впрочем, и зарубежные специалисты. Эксперт центра НАСА в Кливленде Джеффри Лендис и его коллеги полагают, что современные композитные материалы на основе углерода позволят в скором будущем соорудить «вавилонскую башню» высотой 25 км. С ее вершины полезную нагрузку можно было бы выводить в космос с помощью всего одноступенчатой ракеты, а не трехступенчатой, как ныне. И если сейчас полезная нагрузка составляет примерно 2 % от стартовой массы всего носителя, то с помощью высотных запусков этот показатель удастся существенно повысить.
«Надо оснастить стартовую площадку высокой башней, а еще лучше — одновременно перенести ее на какую-нибудь высокую гору, — говорит Лендис. — Наши расчеты показывают, что старт ракеты с высоты 15 км позволяет увеличить полезную нагрузку в 1,5 раза, а с 20 км — вдвое… Строительство же подобного сооружения обойдется примерно столько же, как и возведение обычного небоскреба где-нибудь на Манхэттене».
Интересно, что подобную же идею изобретатель из Самары, специалист по ракетно-космической техники В. Н. Пикуль предложил еще в конце 90-х годов прошлого века. «Особенность моего способа состоит в медленном разгоне особой платформы с ракетой на борту по широколейному железнодорожному спуску (точнее, в данном случае — подъему), — рассказывал он. — По мере возрастания скорости подъем становится все круче, и, наконец, ракета, стартует практически вертикально, используя мощь собственных двигателей».
В свою очередь, Пикуль опирался на идею К. Э. Циолковского, красочно описанную Александром Беляевым в научно-фантастической повести «Звезда КЭЦ».
Причем строить подобные космодромы оба исследователя предлагают где-нибудь в гористых, малонаселенных местах. Горы, как уже говорилось, дают природный выигрыш в высоте — ведь вершины некоторых пиков находятся на высоте 8 км над уровнем моря.
Со временем подобная башня может стать основой и для космического лифта, конструкцию которого предлагает коллега Лендиса по НАСА Дэвид Смитерман. Свою разработку он основывает на идее ленинградского инженера Юрия Арцутанова и его американского коллеги Джерома Пирсона, которые соответственно в 60-х и 80-х годах прошлого века предложили первые проекты такого рода.
Суть идеи весьма проста и величава.
Надо запустить тяжелый спутник на геостационарную орбиту высотой 36 тысяч км. Спутник при этом будет неподвижно висеть над одной точкой планеты, синхронно вращаясь вместе с нею. С него можно спустить вниз прочную, например, кевларовую нить. А как только она достигнет Земли, подцепить к ней более толстый и прочный канат. Когда его верхний конец будет закреплен на спутнике, к канату прицепим широкую и прочную ленту из композитной ткани. А уж по этой ленте затем можно будет пускать вверх-вниз кабину космического лифта, перевозя таким образом людей и грузы.
Как показывают первые прикидки, подобные проекты могут быть осуществлены при соответствующем финансировании где-то через 15–20 лет. Стоимость же доставки грузов на орбиту вполне может снизиться в 100–200 раз и более по сравнению с нынешними ценами.
Пока же для начала энтузиасты тросовых систем хотели бы провести эксперименты по спуску с орбиты с помощью троса «космической почты».
Инициатором проекта стало Европейское космическое агентство, в котором «толкачом» выступает профессор из Нидерландов Вуббо Оккелс. Он уже сумел заинтересовать «космической почтой» около трех десятков университетов Европы, Канады, Японии. В январе 2003 года совещание, посвященное этому проекту, прошло и в Самарском государственном аэрокосмическом университете.
Технический директор голландской фирмы Delta-Utec Михаиль Круфф рассказал нашим ученым о перспективном проекте. При этом выяснилось, что профессора аэрокосмического университета Владимир Шахмистов, Виктор Балакин и другие 10 лет назад участвовали в реализации подобной идеи по просьбе германской фирмы «Кайзер-Треде». Однако немцы тогда дело до конца не довели: не хватило денег.
Теперь же схема спуска выглядит примерно такой. Трос диаметром в 0,5 мм будет изготовлен из кевлара — одного из самых прочных материалов на планете. Предполагаемая длина — около 30 км. Капсулу от космического аппарата направят к Земле. В нужной точке орбиты трос отцепят, и он сгорит в атмосфере. А капсула в специальных защитных оболочках, выполняющих к тому же роль парашюта, благополучно приземлится в заданном районе планеты.
Если первые эксперименты пройдут удачно, новая технология доставки на Землю различных грузов с использованием надувных оболочек может быть использована не только для «космической почты», но и для возвращения, например, разгонных блоков космических аппаратов для повторного их использования. Это позволит сэкономить значительные средства.